精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(-1,1),若方程3a(f(x))2+2bf(x)+c=0恰有4个不同的实根,则实数a的值为.(  )
A、
1
2
B、-
1
2
C、1
D、-1
分析:根据函数的单调区间求出a,b,c的关系,然后利用导数研究三次函数的极值,利用数形结合即可得到a的结论.
解答:解:∵函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(-1,1),
∴f'(x)>0的解集为(-1,1),精英家教网
即f'(x)=3ax2+2bx+c>0的解集为(-1,1),
∴a<0,且x=-1和x=1是方程f'(x)=3ax2+2bx+c=0的两个根,
即-1+1=-
2b
3a
=0
-1×1=
c
3a
=-1

解得b=0,c=-3a.
∴f(x)=ax3+bx2+cx=ax3-3ax=ax(x2-3),
则方程3a(f(x))2+2bf(x)+c=0等价为3a(f(x))2-3a=0,
即(f(x))2=1,即f(x)=±1.
要使方程3a(f(x))2+2bf(x)+c=0恰有4个不同的实根,即f(x)=±1.各有2个不同的根,
即函数f(x)的极值等于±1,
∵f(x)=ax3+bx2+cx=ax3-3ax=ax(x2-3),
∴f'(x)=3ax2-3a=3a(x2-1),
∵a<0,
∴当f'(x)>0得-1<x<1,此时函数单调递增,
当f'(x)<0得x<-1或x>1,此时函数单调递减,
∴当x=1时,函数取得极大值f(1)=-2a,
当x=-1时,函数取得极小值f(-1)=2a,
由f(1)=-2a=1且f(-1)=2a=-1得,a=-
1
2

故选:B.
点评:本题主要考查方程根的个数的应用,利用方程和函数之间的关系,作出函数的图象,利用数形结合是解决本题的关键.利用导数研究函数的极值是解决本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案