精英家教网 > 高中数学 > 题目详情

【题目】某养殖场需要通过某装置对养殖车间进行恒温控制,为了解日用电量与日平均气温(℃)之间的关系,随机统计了某5天的用电量与当天平均气温,并制作了对照表:

日平均气温(℃)

3

4

5

6

7

日用电量(

2.5

3

4

4.5

6

(Ⅰ)求关于的线性回归方程;

(Ⅱ)请利用(Ⅰ)中的线性回归方程预测日平均气温为12℃时的日用电量.

附:回归直线的斜率和截距的最小二乘法估计公式分别为.

【答案】(Ⅰ)(Ⅱ)

【解析】

)由表中数据计算得,所以代入公式可得,可得关于的线性回归方程;

)将代入()中得到的回归方程即可得日平均气温为12℃时日用电量.

)由表中数据计算得

所以.

所以关于的线性回归方程为.

)将代入()中得到的回归方程得

故预测日平均气温为12℃时,日用电量为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数图像过点,在处的切线方程是

1)求的解析式;

2)求函数的图像过点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有种特产水果很受当地老百姓欢迎,但该种水果只能在9月份销售,且该种水果只能当天食用口感最好,隔天食用口感较差。某超市每年9月份都销售该特产水果,每天计划进货量相同,进货成本每公斤8元,销售价每公斤12元;当天未卖出的水果则转卖给水果罐头厂,但每公斤只能卖到5元。根据往年销售经验,每天需求量与当地气温范围有一定关系。如果气温不低于30度,需求量为5000公斤;如果气温位于,需求量为3500公斤;如果气温低于25度,需求量为2000公斤;为了制定今年9月份订购计划,统计了前三年9月份的气温范围数据,得下面的频数分布表

气温范围

天数

4

14

36

21

15

以气温范围位于各区间的频率代替气温范围位于该区间的概率.

1)求今年9月份这种水果一天需求量(单位:公斤)的分布列和数学期望;

2)设9月份一天销售特产水果的利润为(单位:元),当9月份这种水果一天的进货量为(单位:公斤)为多少时,的数学期望达到最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国居民生活水平的不断提高,汽车逐步进入百姓家庭,但随之面来的交通拥堵和交通事故时有发生,给人民的生活也带来了诸多不便.某市为了确保交通安全.决定对交通秩序做进步整顿,对在通路上行驶的前后相邻两机动车之间的距离d(米)与机动车行驶速度v(千米/小时)做出如下两条规定:

av2

.(其中a是常量,表示车身长度,单位:米)

1)当时.求机动车的最大行驶速度;

2)设机动车每小时流量Q,问当机动车行驶速度v≥30(千米/小时)时,机动车以什么样的状态行驶,能使机动车每小时流量Q最大?并说明理由.(机动车每小时流量Q是指每小时通过观测点的车辆数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系。根据组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是( )

A.具有正的线性相关关系

B.回归直线过样本点的中心

C.若该大学某女生身高增加,则其体重约增加

D.若该大学某女生身高为,则可断定其体重必为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民区有一个银行网点(以下简称“网点”),网点开设了若干个服务窗口,每个窗口可以办理的业务都相同,每工作日开始办理业务的时间是8点30分,8点30分之前为等待时段.假设每位储户在等待时段到网点等待办理业务的概率都相等,且每位储户是否在该时段到网点相互独立.根据历史数据,统计了各工作日在等待时段到网点等待办理业务的储户人数,得到如图所示的频率分布直方图:

(1)估计每工作日等待时段到网点等待办理业务的储户人数的平均值;

(2)假设网点共有1000名储户,将频率视作概率,若不考虑新增储户的情况,解决以下问题:

①试求每位储户在等待时段到网点等待办理业务的概率;

②储户都是按照进入网点的先后顺序,在等候人数最少的服务窗口排队办理业务.记“每工作日上午8点30分时网点每个服务窗口的排队人数(包括正在办理业务的储户)都不超过3”为事件,要使事件的概率不小于0.75,则网点至少需开设多少个服务窗口?

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆)的右焦点,且椭圆过点.

1)求椭圆的方程;

2)设动直线与椭圆交于两点,,且的面积.

①求证:为定值;

②设直线的中点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

同步练习册答案