精英家教网 > 高中数学 > 题目详情

已知函数f(n)对任意实数n都满足条件:数学公式,若f(1)=8,则f(2009)=________.

8
分析:根据已知中函数f(n)对于任意实数n满足条件f(n+1)=得出函数f(n)的周期是2,进而根据周期函数的性质,求出f(2009).
解答:因为函数f(n)对任意实数n都满足条件:∵f(n+1)=
∴f(n+1+1)==f(n)
即∴f(n+2)=f(n)
∴f(x)是以2为周期的函数
∴f(2009)=f(1+2×1004)=f(1)=8
故答案为:8.
点评:本题考查的知识点是函数的周期性,函数值,
其中根据已知中函数f(n)对于任意实数n满足条件f(n+1)=判断出函数f(n)是以2为周期的周期函数,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)对任意的p∈[2,3],x∈[3,+∞)恒成立,则t的最小值为
-
2
3
-
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)对任意的p∈[2,3],x∈[3,+∞)恒成立,则t的最小值为________.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市南开中学高三(上)11月月考数学试卷(文科)(解析版) 题型:填空题

已知函数y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)对任意的p∈[2,3],x∈[3,+∞)恒成立,则t的最小值为   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市南开中学高三(上)11月月考数学试卷(文科)(解析版) 题型:填空题

已知函数y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)对任意的p∈[2,3],x∈[3,+∞)恒成立,则t的最小值为   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)对任意的p∈[2,3],x∈[3,+∞)恒成立,则t的最小值为______.

查看答案和解析>>

同步练习册答案