精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的偶函数f(x),满足f(x+4)=-f(x)+f(2),且在区间[0,4]上是增函数,下列命题中正确的是(

A.函数f(x)的一个周期为4

B.直线x=-4是函数f(x)图象的一条对称轴

C.函数f(x)[-6,-5)上单调递增,在[-5,-4)上单调递减

D.函数f(x)[0,100]内有25个零点

【答案】ABD

【解析】

根据函数的奇偶性和条件,得到,即函数是周期为4的周期函数,结合的周期性,奇偶性以及对称性的性质分别进行判断即可.

偶函数,满足

,得

即函数是周期为4的周期函数,
A正确;
是偶函数,
图象关于y轴即对称,函数的周期是4
是函数图象的一条对称轴,
B正确;
在区间上是增函数,
在区间上是减函数,
则在区间上是减函数,
C错误;
在区间上是减函数,
在区间上是减函数,
即函数在一个周期内只有一个零点,
则函数内有25个零点,故D正确.
故选:ABD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现某路口对一周内过往人员进行健康码检查安排7名工作人员进行值班,每人值班1天,每天1人,其中甲乙两人需要安排在相邻两天,且甲不排在周三,则不同的安排方法有( )

A.1440B.1400C.1320D.1200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量=(sinA+sinC,sinB),=(c﹣b,c﹣a),且

(1)求角A的大小;

(2)若a=3,b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:

土地使用面积(单位:亩)

管理时间(单位:月)

并调查了某村名村民参与管理的意愿,得到的部分数据如下表所示:

愿意参与管理

不愿意参与管理

男性村民

女性村民

求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?

若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望.

参考公式:,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mx2+(1-3m)x-4,m∈R.

(1)当m=1时,求f(x)在区间[-2,2]上的最大值和最小值.

(2)解关于x的不等式f(x)>-1.

(3)当m<0时,若存在x0∈(1,+∞),使得f(x)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1) 已知函数,若,则_____

(2)等差数列{an}的前n项和为Sn,若a2=2,a11-a4=7,则S13________.

(3)若命题“x∈R,使得x2+(a﹣1)x+1<0”是真命题,则实数a的取值范围是______

(4)在△ABC中,tanA+tanB+tanA·tanB,且sinA·cosA=,则此三角形为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数函数与直线相切,设函数其中acRe是自然对数的底数.

1)讨论h(x)的单调性;

2h(x)在区间内有两个极值点.

①求a的取值范围;

②设函数h(x)的极大值和极小值的差为M,求实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的侧面是菱形,.

(1) 求证:

(2)若,求的值,使得 二面角的余弦值的为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人2013-2017这五年的年度体检的血压值的折线图如图所示.

(1)根据散点图,直接判断甲、乙这五年年度体检的血压值谁的波动更大,并求波动更大者的方差;

(2)根据乙这五年年度体检血压值的数据,求年度体检血压值关于年份的线性回归方程,并据此估计乙在2018年年度体检的血压值.

(附:

查看答案和解析>>

同步练习册答案