精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ,(λ∈R,使得对任意的x∈R,都有f(x+λ)=λf(x),则称y=f(x)为“倍增函数”,λ为“倍增系数”,下列命题:
①函数f(x)=2x+11是倍增函数,且λ=1倍增系数;
②若函数y=f(x)是倍增系数λ=-1的倍增函数,则y=f(x)至少有1个零点;
③函数f(x)=e-x是倍增函数,且倍增系数λ∈(0,1).
其中为真命题的是______.(写出所有真命题的序号)
∵f(x)=2x+11是倍增函数,
∴2(x+λ)+11=λ(2x+11),
∴λ=
2x+11
2x+9
≠1,故①不正确;
∵函数y=f(x)是倍增系数λ=-1的倍增函数,
∴f(x-1)=-f(x),
当x=0时,f(-1)+f(0)=0,
若f(0),f(-1)任一个为0,函数f(x)有零点.
若f(0),f(-1)均不为零,则f(0),f(-1)异号,
由零点存在定理,在(-1,0)区间存在x0,f(x0)=0,
即y=f(x)至少有1个零点,故②正确;
∵f(x)=e-x是倍增函数,
∴e-(x+λ)=λe-x
1
exeλ
=
λ
ex

∴λ=
1
eλ
∈(0,1),故③正确.
故答案为:②③.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案