精英家教网 > 高中数学 > 题目详情
2.已知f(x)=x+xlnx,若k(x-2)<f(x)对任意x>2恒成立,则整数k的最大值是(  )
A.8B.6C.5D.4

分析 问题转化为k<$\frac{f(x)}{x-2}$=$\frac{x+xlnx}{x-2}$;令F(x)=$\frac{x+xlnx}{x-2}$,根据函数的单调性得到存在x0∈(8,9),使g(x0)=0,即2lnx0=x0-4;求出F(x)的最小值,从而求出k的最大值即可.

解答 解:∵x>2,
∴k(x-2)<f(x)可化为k<$\frac{f(x)}{x-2}$=$\frac{x+xlnx}{x-2}$;
令F(x)=$\frac{x+xlnx}{x-2}$,
则F′(x)=$\frac{x-2lnx-4}{{(x-2)}^{2}}$;
令g(x)=x-2lnx-4,则g′(x)=1-$\frac{2}{x}$>0,
故g(x)在(2,+∞)上是增函数,
且g(8)=8-2ln8-4=2(2-ln8)<0,g(9)=9-2ln9-4=5-2ln9>0;
故存在x0∈(8,9),使g(x0)=0,即2lnx0=x0-4;
故F(x)在(2,x0)上是减函数,在(x0,+∞)上是增函数;
故Fmin(x)=F(x0)=$\frac{{x}_{0}{+x}_{0}•\frac{{x}_{0}-4}{2}}{{x}_{0}-2}$=$\frac{{x}_{0}}{2}$;
故k<$\frac{{x}_{0}}{2}$;
故k的最大值是4;
故选:D.

点评 本题考查了导数的综合应用及函数零点判定定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知$0<α<π,sinα•cosα=-\frac{1}{2}$,则$\frac{1}{1+sinα}+\frac{1}{1+cosα}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{2}}}{2}$,且过点$(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程;
(2)如图,过椭圆C的右焦点F作两条相互垂直的直线AB,DE交椭圆分别于A,B,D,E,且满足$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}$,$\overrightarrow{DN}=\frac{1}{2}\overrightarrow{DE}$,求△MNF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为e,则斜率为k的直线与双曲线C的左、右两支都相交的充要条件是(  )
A.k2-e2>1B.k2-e2<1C.e2-k2>1D.e2-k2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:3x+4y-5=0,圆O:x2+y2=4.
(1)求直线l1被圆O所截得的弦长;
(2)如果过点(-1,2)的直线l2与l1垂直,l2与圆心在直线x-2y=0上的圆M相切,圆M被直线l1分成两段圆弧,其弧长之比为2:1,则圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛掷一枚质地均匀的骰子两次,记A={两次的点数均为偶数},B={两次的点数之和为8},则P(B|A)=(  )
A.$\frac{1}{12}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线$y=f(x)=\frac{4}{x}$
(1)求曲线y=f(x)在点A(2,2)处的切线方程;
(2)求与曲线y=f(x)相切且过B(2,0)的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设正数x,y,z满足不等式$\frac{{x}^{2}+{y}^{2}-{z}^{2}}{2xy}$+$\frac{{y}^{2}+{z}^{2}-{x}^{2}}{2yz}$+$\frac{{z}^{2}+{x}^{2}-{y}^{2}}{2zx}$>1,求证:x,y,z是某个三角形的三边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B出发沿北偏东α的方向追赶渔船乙,刚好用两小时追赶上.
(1)求渔船甲的速度;
(2)求sinC的值.

查看答案和解析>>

同步练习册答案