精英家教网 > 高中数学 > 题目详情
的三个顶点所对三边长分别为,已知的内心,过作直线与直线分别交于三点,且,则.将这个结论类比到空间:设四面体ABCD的四个面BCD,ABC,ACD,ABD的面积分别为,内切球球心为,过作直线与平面BCD,ABC,ACD,ABD分别交于点,且,则             .

试题分析:此类问题由平面类比空间,应该面积类比体积,长度类比面积,.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在多面体中,四边形是矩形,,平面.

(1)若点是中点,求证:.
(2)求证:.
(3)若.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(Ⅰ)证明:平面
(Ⅱ)证明:∥平面
(Ⅲ)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

右图所示的直观图,其原来平面图形的面积是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥S-ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=,则三棱锥外接球O的表面积等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的体积为(  )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆台的上底半径为2cm,下底半径为4cm,圆台的高为cm,则侧面展开图所在扇形的圆心角=______.

查看答案和解析>>

同步练习册答案