精英家教网 > 高中数学 > 题目详情
设集合A为函数y=lg
1+x
2-x
的定义域,集合B为不等式(ax-1)(x+2)(a>0)的解集.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若B⊆CRA,求实数a的取值范围.
∵函数y=lg
1+x
2-x
的定义域为(-1,2)
故A=(-1,2)
(1)当a=1时,不等式(ax-1)(x+2)≥0可化为(x-1)(x+2)≥0
解得B=(-∞,-2]∪[1,+∞)
∴A∩B=[1,2)
(2)∵CRA=(-∞,-1]∪[2,+∞)
又∵a>0
∴B=(-∞,-2]∪[
1
a
,+∞)
若B⊆CRA,
1
a
≥2,即0<a≤
1
2

故实数a的取值范围是(0,
1
2
]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A为函数y=lg
1+x2-x
的定义域,集合B为不等式(ax-1)(x+2)(a>0)的解集.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若B⊆CRA,求实数a的取值范围.

查看答案和解析>>

同步练习册答案