【题目】已知函数f(x+1)为奇函数,函数f(x﹣1)为偶函数,且f(0)=2,则f(4)=( )
A.2
B.﹣2
C.4
D.﹣4
【答案】B
【解析】解:由题意得 f(﹣x+1)=﹣f(x+1)①
f(x﹣1)=f(﹣x﹣1)②
由①得f(x+1)=﹣f(﹣x+1),
所以f(4)=f(3+1)=﹣f(﹣3+1)=﹣f(﹣2),
又由②得 f(﹣2)=f(﹣1﹣1)=f(1﹣1)=f(0)=2
于是f(4)=﹣2.
故选B.
【考点精析】本题主要考查了函数奇偶性的性质和函数的值的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如果对于任意实数x,[x]表示不超过x的最大整数.例如[3.27]=3,[0.6]=0.那么“[x]=[y]”是“|x﹣y|<1”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈R,2x<3x;命题q:x∈R,x3=1﹣x2 , 则下列命题中为真命题的是( )
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )
A. 12种 B. 18种 C. 24种 D. 36种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设c<0,f(x)是区间[a,b]上的减函数,下列命题中正确的是( )
A. f(x)在区间[a,b]上有最小值f(a) B. f(x)+c在[a,b]上有最小值f(a)+c
C. f(x)-c在[a,b]上有最小值f(a)-c D. cf(x)在[a,b]上有最小值cf(a)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com