精英家教网 > 高中数学 > 题目详情
设a为实数,函数f(x)=x|x-a|,其中x∈R.
(1)判断函数f(x)的奇偶性,并加以证明;
(2)写出函数f(x)的单调区间.
(1)当a=0时,f(x)=x|x|,所以f(x)为奇函数…(1分)
因为定义域为R关于原点对称,且f(-x)=-x|-x|=-f(x),所以f(x)为奇函数.…(3分)
当a≠0时,f(x)=x|x-a|为非奇非偶函数,…(4分)
f(a)=0,f(-a)=-a|2a|,所以f(-a)≠f(a),f(-a)≠-f(a)
所以f(x)是非奇非偶函数.…(6分)
(2)当a=0时,f(x)=
x2x≥0
-x2x<0
,f(x)的单调递增区间为(-∞,+∞);…(8分)
当a>0时,f(x)=
x2-axx≥a
-x2+axx<a

f(x)的单调递增区间为(-∞,
a
2
)
和(a,+∞);…(10分)
f(x)的单调递减区间为(
a
2
,a)
;…(12分)
当a<0时,f(x)=
x2-axx≥a
-x2+axx<a

f(x)的单调递增区间为(-∞,a)和(
a
2
,+∞)
;…(14分)
f(x)的单调递减区间为(a,
a
2
)
…(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函数,试求a的值;
(2)在(1)的条件下,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函数的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=ex-2x+2a,x∈R.求f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为
y=-2x
y=-2x

查看答案和解析>>

同步练习册答案