精英家教网 > 高中数学 > 题目详情
(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.
(1)y=6x﹣8
(2)f(x)在闭区间[0,|2a|]上的最小值为g(a)=
(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6
∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;
(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.
f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)
令f′(x)=0,得到x1=1,x2=a
当a>1时,
x
0
(0,1)
1
(1,a)
a
(a,2a)
2a
f′(x)
 
+
0

0
+
 
f(x)
0
单调递增
极大值3a﹣1
单调递减
极小值
a2(3﹣a)
单调递增
4a3
比较f(0)=0和f(a)=a2(3﹣a)的大小可得g(a)=
当a<﹣1时,
X
0
(0,1)
1
(1,﹣2a)
﹣2a
f′x)
 

0
+
 
f(x)
0
单调递减
极小值3a﹣1
单调递增
﹣28a3﹣24a2
∴g(a)=3a﹣1
∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论的单调性.
(2)证明:,e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2ax--(2+a)lnx(a≥0).
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x­1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x­2)|成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;        ②f(0)f(1)<0;
③f(0)f(3)>0;        ④f(0)f(3)<0.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数内有极小值,则
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x-
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)f(x)在[1,e]上的最小值为,求实数a的值;
(3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若函数上为减函数,求实数的最小值;
(2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在区间上的值域为(    )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案