精英家教网 > 高中数学 > 题目详情
函数f(x)=ln(x+1)-ax在(1,2)上单调递增,则实数a的取值范围是
(-∞,
1
3
]
(-∞,
1
3
]
分析:根据单调性可知f′(x)≥0在(1,2)上恒成立,然后将a分离出来,求出不等式另一侧的最值,从而求出a的取值范围.
解答:解:∵函数f(x)=ln(x+1)-ax在(1,2)上单调递增
f(x)=
1
x+1
-a≥0
在(1,2)上恒成立,
a≤ (
1
x+1
)
min
,即 a≤
1
3

故答案为:(-∞,
1
3
]
点评:本题主要考查了函数的单调性与导数的关系,以及恒成立问题,同时考查了转化的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ax+1)+x3-x2-ax.
(Ⅰ)若x=
2
3
为f(x)的极值点,求实数a的值;
(Ⅱ)若y=f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(Ⅲ)若a=-1使,方程f(1-x)-(1-x)3=
b
x
有实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)讨论关于x的方程lnx=f(x)(x2-2ex+m)的根的个数.
(Ⅲ)证明:
ln(22-1)
22
+
ln(32-1)
32
+…+
ln(n2-1)
n2
2n2-n-1
2(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ln(aex-x-3)的定义域为R,则实数a的取值范围是
(e2,+∞)
(e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x-1)的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•武汉模拟)已知函数f(x)=ln(x-2)-
x22a
(a为常数且a≠0)
(1)求导数f′(x);
(2)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案