精英家教网 > 高中数学 > 题目详情
已知tanθ=3,则sin2θ+sinθcosθ-2cos2θ=(  )
分析:原式分母看做“1”,利用同角三角函数间的基本关系化简,将tanθ的值代入计算即可求出值.
解答:解:∵tanθ=3,
∴原式=
sin2θ+sinθcosθ-2cos2θ
sin2θ+cos2θ
=
tan2θ+tanθ-2
tan2θ+1
=
9+3-2
9+1
=1.
故选A
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=-3,则
1sin2a-2cos2a
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,则sinαcosα+cos2α的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=3,则2sin2θ+2sinθcosθ-cos2θ=
23
10
23
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,则
3sinα+cosαsinα-2cosα
=
 

查看答案和解析>>

同步练习册答案