精英家教网 > 高中数学 > 题目详情
已知命题:“若数列是等比数列,且,则数列也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.

解析:类比等比数列的性质,可以得到等差数列的一个性质是:若数列是等差数列,则数列也是等差数列.

证明如下:

设等差数列的公差为,则

所以数列是以为首项,为公差的等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题:“若数列{an}是等比数列,且an>0,则数列bn=
na1a2… an
(n∈N*)
也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3,5,21是各项均为整数的无穷等差数列{an}的三项,若数列{an}的首项为a1,公差为d,给出关于数列{an}的4个命题:1满足条件的d有8个不同的取值;2存在满足条件的数列{an},使得对任意的n∈N*,都有S2n=4Sn成立;3对任意满足条件的d,存在a1,使得99一定是数列{an}中的一项;4对任意满足条件的d,存在a1,使得30一定是数列{an}中的一项;则其中所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:“若数列{an}是等比数列,且an>0,则数列bn=
ka1a2an
(n∈N*)
也是等比数列”.可类比得关于等差数列的一个性质为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:
①已知正项等比数列{an}中,不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立;
②若F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),则F(1)=2,F(2)=24;
③已知数列{an}中,an=n2+λn+1(λ∈R).若λ>-3,则恒有an+1>an(n∈N*);
④公差小于零的等差数列{an}的前n项和为Sn.若S20=S40,则S30为数列{Sn}的最大项;以上四个命题正确的是
①③④
①③④
(填入相应序号)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学文卷 题型:选择题

下列关于数列的命题

① 若数列是等差数列,且为正整数)则 

② 若数列是公比为2的等比数列

③ 2和8的等比中项为±4                           

④ 已知等差数列的通项公式为,则是关于的一次函数

其中真命题的个数为                                                (     )

A.1        B.2         C.3       D.4

 

查看答案和解析>>

同步练习册答案