精英家教网 > 高中数学 > 题目详情
如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为BC弧上一点,CE⊥AD于E,求证:AE=BD+DE.

【答案】分析:本题的思路就是把DE和BD转化到AE边上来,在线段AE上截取AF=BD,圆周角相等,AC=BC,AF=BD,再加上∠CBD=∠CAD,证出两个三角形全等,得到线段相等,得到结论.
解答:证明:在线段AE上截取AF=BD,
圆周角相等,AC=BC,AF=BD,
∠CBD=∠CAD
△CAF≌△CBD,
∴CF=CD,
∵CE⊥AD于E
∴EF=DE
∴AE=BD+DE
点评:本题考查圆周角定理,本题解题的关键是根据圆周角的定理得到两个角相等,从而证明两个三角形全等,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是BC边上的任一点(D与B,C不重合),
且|
AB
|2=|
AD
|2+|
BD
|•|
DC
|,试建立适当的直角坐标系,证明:△ABC为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为BC弧上一点,CE⊥AD于E,求证:AE=BD+DE.

查看答案和解析>>

科目:高中数学 来源:江苏金练·高中数学、全解全练、数学必修4 题型:022

如图,等腰△ABC中,E,F分别是腰AB、AC靠近顶点A的三等分点,若||=6,则||=________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为BC弧上一点,CE⊥AD于E,求证:AE=BD+DE.

查看答案和解析>>

同步练习册答案