精英家教网 > 高中数学 > 题目详情
已知α、β是方程ln2x-lnx2-2=0的两个根,则logαβ+logβα=______.
∵α、β是方程ln2x-lnx2-2=0的两个根,∴lnα和 lnβ是方程t2-2t-2=0的两个根,
∴lnα+lnβ=2,lnα•lnβ=-2.
∴logαβ+logβα=
lnβ
lnα
+
lnα
lnβ
=
ln2β+ln2α
lnα•lnβ
=
(lnα+lnβ)2-2lnα•lnβ
lnα•lnβ
=
4-2•(-2)
-2
=-4.
故答案为:-4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+k)(k为常数)是实数集R上的奇函数
(1)求k的值
(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,且g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围
(3)讨论关于x的方程
lnxf(x)
=x2-2ex+m
的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•茂名一模)已知函数f(x)=ln(ex+a)(a为常数)求实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]及λ所在的取值范围上恒成立,求t的取值范围;
(3)讨论关于x的方程
lnxf(x)
=x2-2ex+m
的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)讨论关于x的方程lnx=f(x)(x2-2ex+m)的根的个数.
(Ⅲ)证明:
ln(22-1)
22
+
ln(32-1)
32
+…+
ln(n2-1)
n2
2n2-n-1
2(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sin x是区间[-1,1]上的减函数.
(1)求a的值及λ的范围.
(2)讨论关于x的方程
lnxf(x)
=x2-2ex+m的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数.函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)讨论关于x的方程
lnxf(x)
=x2-2ex+m的根的个数.
(2)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.

查看答案和解析>>

同步练习册答案