精英家教网 > 高中数学 > 题目详情
作出函数y=x2-2x+3的简图,研究当自变量x在下列范围内取值时的最大值与最小值.
(1)-1≤x≤0;
(2)0≤x≤3;
(3)x∈(-∞,+∞).
考点:函数的图象
专题:函数的性质及应用
分析:首先确定二次函数的对称轴,配方得二次函数顶点式解析式,画图;根据图象研究函数的单调性,写出最值.
解答: 解:函数y=x2-2x+3=(x-1)2+2,此抛物线开口向上,对称轴方程为x=1,图象如下:

(1)当-1≤x≤0时;函数单调递减,∴ymin=f(0)=3,ymax=f(-1)=6;
(2)当0≤x≤3时;函数不单调,从图象可知,ymin=f(1)=2,ymax=f(3)=6;
(3)当x∈(-∞,+∞)时,从图象可知,ymin=f(1)=2,函数无最大值.
点评:本题主要考查二次函数的画图、根据图象研究函数的单调性再写出函数的最值,属于低档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α、β是方程x2-
10
x=2=0的两实根,求log2
α2-αβ+β2
|α-β|

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在R上是奇函数,且在(-1,0)上单调递增,且f(x+2)=-f(x).
(1)证明:f(x)的图象关于点(2k,0)中心对称,以及关于直线x=2k+1对称;
(2)讨论f(x)在区间(1,2)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点D(0,
3
),点P在圆C:x2+(y+
3
2=16上,点,M在DP上,点N在CP上,且DM=MP.MN⊥DP.
(1)求点N的轨迹E的方程;
(2)是否存在点T(0,t),使过点T作圆O:x2+y2=1的切线l交曲线E与A、B两点,△AOB面积S取得最大值,若存在,求出S的最大值和相应的点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2x
,各项均为正数的数列{an}满足a1=1,an+2=f(an),若a2010=a2012,则a20+a11的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=|x+a|-2x,a<0,不等式f(x)≤0的解集为M,且M⊆{x|x≥2}.
(1)求实数a的取值范围;
(2)当a取最大值时,求f(x)在[1,10]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知A(1,-2),B(4,0),P(a,1),N(a+1,1),若四边形PABN的周长最小,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域分别为F,G,且F?G.若对任意的x∈F,都有g(x)=f(x),则称g(x)为f(x)在G上的一个“延拓函数”.已知函数f(x)=2x(x≤0),若g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则函数g(x)的解析式是(  )
A、2|x|
B、log2|x|
C、(
1
2
|x|
D、log 
1
2
|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(1)求a与b的值;
(2)求函数y=f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案