精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求的极值;

2)设,对任意都有成立,求实数的取值范围.

【答案】1的极大值为,无极小值;(2.

【解析】

1)把代入,然后求出函数的定义域,对函数求导,结合导数与单调性的关系可求函数的极值,

2,根据已知可转化为,结合导数进行求解.

1)当时,,所以函数的定义域为

所以,且

所以当时,

所以.

所以当时,

所以上单调递减,故.

同理当时,

时,

所以是单调递增,在单调递减,

所以当时,的极大值为,无极小值.

2)令

因为对任意都有成立,

所以.

因为

所以.

,即,解得

,即,解得.

所以上单调递减,在上单调递增,

所以.

因为

所以,当

,即,解得;令,即,解得.

所以上单调递增,在上单调递减,

所以

所以

所以,即实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,为两个不同的平面,则下列命题中正确的有  

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性;

(2)若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.

1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:

A市居民

B市居民

喜欢杨树

300

200

喜欢木棉树

250

250

是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;

2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;

3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极值;

2)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是⊙的直径,是⊙的切线,交⊙E,过E的切线与交于D.

(I)求证:

(II)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:①若“”是“”的充要条件;

②若“”,则实数的取值范围是

③已知平面,直线,若,则

④函数的所有零点存在区间是.

其中正确的个数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一项针对某一线城市3050岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:

1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.

2)把购买六类高价商品的金额不低于5000元的中年人称为高收入人群,根据已知条件完成22列联表,并据此判断能否有95%的把握认为高收入人群与性别有关?

参考公式:,其中

参考附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”

1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明

2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减

3)设定义域为的“关于的偶型函数”是奇函数,若,请猜测的值,并用数学归纳法证明你的结论

查看答案和解析>>

同步练习册答案