| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\sqrt{6}$+1 | C. | $\sqrt{3}$+1 | D. | $\frac{\sqrt{3}+1}{2}$ |
分析 根据双曲线的定义可知和|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,可得|PF2|=($\sqrt{3}$+1)a,再根据($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0,得到△OPF2为等边三角形,即可得到c=($\sqrt{3}$+1)a,即可求出离心率.
解答
解:|PF1|-|PF2|=2a,|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,
∴|PF2|=($\sqrt{3}$+1)a,
∵($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0,
∴|$\overrightarrow{OP}$|=|$\overrightarrow{O{F}_{2}}$|,
设Q为PF2的中点,
∴$\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$=2$\overrightarrow{OQ}$,$\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$=$\overrightarrow{{F}_{2}P}$,
∴$\overrightarrow{OQ}$⊥$\overrightarrow{{F}_{2}P}$,
∴△OPF2为等边三角形,
∴c=($\sqrt{3}$+1)a,
∴e=$\frac{c}{a}$=$\sqrt{3}$+1,
故选:C.
点评 本题考查双曲线的定义、方程和性质,考查直径所对的圆周角为直角,以及等腰三角形的性质,考查离心率公式的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(2,+∞) | B. | (-1,2) | C. | (-∞,-1) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0}⊆M | B. | M=∅ | C. | -1∈M | D. | 2∈M |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 横坐标向左平动$\frac{π}{4}$个单位长度 | B. | 横坐标向右平移$\frac{π}{4}$个单位长度 | ||
| C. | 横坐标向左平移$\frac{π}{8}$个单位长度 | D. | 横坐标向右平移$\frac{π}{8}$个单位长度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com