精英家教网 > 高中数学 > 题目详情
7.已知点P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右支上一点,F1,F2为双曲线的左、右焦点,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O为坐标原点),且|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,则双曲线离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{6}$+1C.$\sqrt{3}$+1D.$\frac{\sqrt{3}+1}{2}$

分析 根据双曲线的定义可知和|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,可得|PF2|=($\sqrt{3}$+1)a,再根据($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0,得到△OPF2为等边三角形,即可得到c=($\sqrt{3}$+1)a,即可求出离心率.

解答 解:|PF1|-|PF2|=2a,|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,
∴|PF2|=($\sqrt{3}$+1)a,
∵($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0,
∴|$\overrightarrow{OP}$|=|$\overrightarrow{O{F}_{2}}$|,
设Q为PF2的中点,
∴$\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$=2$\overrightarrow{OQ}$,$\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$=$\overrightarrow{{F}_{2}P}$,
∴$\overrightarrow{OQ}$⊥$\overrightarrow{{F}_{2}P}$,
∴△OPF2为等边三角形,
∴c=($\sqrt{3}$+1)a,
∴e=$\frac{c}{a}$=$\sqrt{3}$+1,
故选:C.

点评 本题考查双曲线的定义、方程和性质,考查直径所对的圆周角为直角,以及等腰三角形的性质,考查离心率公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设数列{an}满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足:${a_1}=1,{a_2}=2,{a_{n+2}}={a_{n+1}}-{a_n}(n∈{N^*})$,函数f(x)=ax3+btanx,若f(a4)=9,则f(a1)+f(a2017)的值是-18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?x∈(-1,2),ax+2≠0是假命题的一个充分不必要条件为a∈(  )
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-∞,-1)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集为M,则下列说法正确的是(  )
A.{0}⊆MB.M=∅C.-1∈MD.2∈M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x3-6x2+3x+t)•ex,t∈R.
(1)当t=1时,求函数y=f(x)在x=0处的切线方程;
(2)若函数y=f(x)有三个不同的极值点,求t的取值范围;
(3)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,△PAB的顶点A、B为定点,P为动点,其内切圆O1与AB、PA、PB分别相切于点C、E、F,且$AB=2\sqrt{3}$,||AC|-|BC||=2.
(1)求||PA|-|PB||的值;
(2)建立适当的平面直角坐标系,求动点P的轨迹W的方程;
(3)设l是既不与AB平行也不与AB垂直的直线,线段AB的中点O到直线l的距离为 $\sqrt{2}$,直线l与曲线W相交于不同的两点G、H,点M满足$2\overrightarrow{OM}=\overrightarrow{OG}+\overrightarrow{OH}$,证明:$2|\overrightarrow{OM}|=|\overrightarrow{GH}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)的导函数f'(x),若f(x)的极大值为f(1),极小值为f(-1),则函数y=f(1-x)f'(x)的图象有可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了得到函数y=4cos2x的图象,只需将函数$y=4cos(2x+\frac{π}{4})$的图象上每一个点(  )
A.横坐标向左平动$\frac{π}{4}$个单位长度B.横坐标向右平移$\frac{π}{4}$个单位长度
C.横坐标向左平移$\frac{π}{8}$个单位长度D.横坐标向右平移$\frac{π}{8}$个单位长度

查看答案和解析>>

同步练习册答案