精英家教网 > 高中数学 > 题目详情
设Sn为等差数列{an}的前n项和,Tn为等比数列{bn}的前n项积.
(1)求证:数列S10,S20-S10,S30-S20成等差数列,并给出更一般的结论(只要求给出结论,不必证明);
(2)若T10=10,T20=20,求T30的值?类比(1)你能得到什么结论?(只要求给出结论,不必证明).
分析:(1)设等差数列{an}的公差为d,则Sn=na1+
n(n-1)
2
d
,由此能够证明对于任意正整数k,数列Sk,S2k-Sk,S3k-S2k,…成等差数列.
(2)Tn=b1nq
n(n-1)
2
,由T10=10,T20=20,得b110q45=10,b120q190=20,得b110=10×5
9
20
q5=(
1
5
)
1
20
,由此能够证明数列Tk
T2k
Tk
T3k
T2k
,…成等比数列.
解答:(1)证明:设等差数列{an}的公差为d,
Sn=na1+
n(n-1)
2
d

所以S10=10a1+
10×9
2
d=10a1+45d

同理S20=20a1+190d,S30=30a1+435d.
所以,S20-S10=10a1+145d,S30-S20=10a1+245d,
所以,S10+(S30-S20)=20a1+290d=2(S20-S10),
所以,数列S10,S20-S10,S30-S20成等差数列.  …(5分)
∴对于任意正整数k,数列Sk,S2k-Sk,S3k-S2k,…成等差数列.…(7分)
(2)解:∵等比数列{bn}的前n项积是Tn
Tn=b1nq
n(n-1)
2

∵T10=10,T20=20,∴b110q45=10,b120q190=20,
b110=10×5
9
20
q5=(
1
5
)
1
20

T30=b130q435=(10×5
9
20
)3×[(
1
5
)
1
20
]87=8
.…(12分)
类比(1)能得到结论:对于任意正整数k,数列Tk
T2k
Tk
T3k
T2k
,…成等比数列.…(14分)
点评:本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易错点是计算繁琐,容易失误.解题时要认真审题,注意培养计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,公差d=-2,若S10=S11,则a1=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宁德模拟)设Sn为等差数列{an}的前n项和,若a2=1,a4=5,则S5等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,若S8=30,S4=7,则a4的值等于(  )
A、
1
4
B、
9
4
C、
13
4
D、
17
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)设Sn为等差数列{an}的前n项和,若a1=1,a3=5,Sk+2-Sk=36,则k的值为(  )

查看答案和解析>>

科目:高中数学 来源:2015届四川省广元市高一下学期期中考试数学试卷(解析版) 题型:解答题

设Sn为等差数列{a n}的前n项和,已知a 9 =-2,S 8 =2.

(1)求首项a1和公差d的值;

(2)当n为何值时,Sn最大?并求出Sn的最大值.

 

查看答案和解析>>

同步练习册答案