精英家教网 > 高中数学 > 题目详情
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且
(1)求数列{an}、{bn}的通项公式;
(2)设,求数列{cn}的前n和Tn
【答案】分析:(1)由已知可得,,结合等差数列的通项公式可求公差d,进而可求an,;利用递推公式b1=s1,bn=sn-sn-1(n≥2)可求bn
(2)利用分组求和,结合等差与等比数列的求和公式即可求和
解答:解:∵a1=2,a1,a3,a7成等比数列

设等差数列的公差d,则(2+2d)2=2(2+6d),d>0
∴d=1,an=n+1

∴b1=s1=2
bn=sn-sn-1=2n+1-2-2n+2=2n(n≥2)
当n=1时也适合
∴bn=2n
(2)∵=2n+1

=(2+22+23+…+2n)+(1+1+1+…+1)
=
=2n+1-2+n
点评:本题主要考查了等比数列的性质,等差 数列的通项公式的应用,及数列的递推公式在求解数列的通项公式中的应用,分组求和方法的应用及等比数列的求和公式的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且Sn=2n+1-2
(1)求数列{an}、{bn}的通项公式;
(2)设cn=abn,求数列{cn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省十校联合体高三上学期期初联考文科数学试卷(解析版) 题型:解答题

已知在递增等差数列中,成等比数列数列的前n项和为Sn,且.

(1)求数列的通项公式;(2)设,求数列的前

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且Sn=2n+1-2
(1)求数列{an}、{bn}的通项公式;
(2)设cn=abn,求数列{cn}的前n和Tn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省十校联合体高三(上)期初联考数学试卷 (文科)(解析版) 题型:解答题

已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且
(1)求数列{an}、{bn}的通项公式;
(2)设,求数列{cn}的前n和Tn

查看答案和解析>>

同步练习册答案