分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
解答 解:由函数f(x)的图象可得A=2,$\frac{3T}{2}$=$\frac{3}{2}$•$\frac{2π}{ω}$=$\frac{13π}{4}$-$\frac{π}{4}$,求得ω=1,
在根据五点法作图可得 1×$\frac{π}{4}$+φ=0,求得φ=-$\frac{π}{4}$,故f(x)=2sin(x-$\frac{π}{4}$),
故答案为:$2sin(x-\frac{π}{4})$.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (2,+∞) | C. | $({1,\root{3}{4}})$ | D. | $[{\root{3}{4},2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($-2,-\frac{3}{2}$) | B. | ($-\frac{3}{2},-1)$ | C. | ($-1,-\frac{1}{2}$) | D. | ($-\frac{1}{2},0$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | -5 | C. | 3 | D. | -3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com