精英家教网 > 高中数学 > 题目详情

(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。

已知是公差为的等差数列,是公比为的等比数列。

(1)       若,是否存在,有说明理由;    

(2)       找出所有数列,使对一切,,并说明理由;

(3)       若试确定所有的,使数列中存在某个连续项的和是数列中的一项,请证明。

解析:[解法一](1)由,得,                 ......2分

整理后,可得为整数, 

不存在,使等式成立。                               ......5分

(2)若,即,                         (*)

()若。 

当{}为非零常数列,{}为恒等于1的常数列,满足要求。            ......7分

()若,(*)式等号左边取极限得,(*)式等号右边的极限只有当时,才能等于1。此时等号左边是常数,,矛盾。

综上所述,只有当{}为非零常数列,{}为恒等于1的常数列,满足要求。......10分

【解法二】设  

(i)                    若d=0,则  

(ii)                  若(常数)即,则d=0,矛盾

综上所述,有,       10分

(3)  

.

.               13分

    15分

由二项展开式可得正整数M1M2,使得(4-1)2s+2=4M1+1,

  

故当且仅当p=3s,sN时,命题成立.

说明:第(3)题若学生从以下角度解题,可分别得部分分(即分步得分)

若p为偶数,则am+1+am+2+……+am+p为偶数,但3k为奇数

故此等式不成立,所以,p一定为奇数。

当p=1时,则am+1=bk,即4m+5=3k

而3k=(4-1)k

=

当k为偶数时,存在m,使4m+5=3k成立                        1分

当p=3时,则am+1+am+2+am+3=bk,即3am+2-bk,  

也即3(4m+9)=3k,所以4m+9=3k-1,4(m+1)+5=3k-1

由已证可知,当k-1为偶数即k为奇数时,存在m,  4m+9=3k成立      2分

当p=5时,则am+1+am+2+……+am+5=bk,即5am+3=bk

也即5(4m+13)=3k,而3k不是5的倍数,所以,当p=5时,所要求的m不存在

故不是所有奇数都成立.                                            2分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)

在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.

(1)若,求方程在区间内的解集;

(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;

(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>

科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.
(1)若,求方程在区间内的解集;
(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题

(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

(文)已知数列中,

(1)求证数列不是等比数列,并求该数列的通项公式;

(2)求数列的前项和

(3)设数列的前项和为,若对任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题

本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设函数是定义域为R的奇函数.

(1)求k值;

(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

 

 

查看答案和解析>>

科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)

在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.

(1)若,求方程在区间内的解集;

(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;

(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

 

查看答案和解析>>

同步练习册答案