精英家教网 > 高中数学 > 题目详情

命题“对任意的”的否定是

A.不存在          

B.存在

C.存在               

D.对任意的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若
x-1x-2
≤0
,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是
 
(填上你认为正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源:2011年安徽省马鞍山二中高三月考数学试卷(文科)(解析版) 题型:填空题

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是    (填上你认为正确的序号).

查看答案和解析>>

科目:高中数学 来源:2011年新疆乌鲁木齐高级中学高考数学一模试卷(理科)(解析版) 题型:填空题

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是    (填上你认为正确的序号).

查看答案和解析>>

科目:高中数学 来源:2011年江西省九江市修水一中高三第一次考试数学试卷(理科)(解析版) 题型:解答题

已知以下四个命题:
①如果x1,x2是一元二次方程ax2+bx+c=0的两个实根,且x1<x2,那么不等式ax2+bx+c<0的解集为{x|x1<x<x2};
②若,则(x-1)(x-2)≤0;
③“若m>2,则x2-2x+m>0的解集是实数集R”的逆否命题;
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.其中为真命题的是    (填上你认为正确的序号).

查看答案和解析>>

同步练习册答案