精英家教网 > 高中数学 > 题目详情

无穷等比数列{an}的各项和为3,第2项为数学公式,则该数列的公比q=________.


分析:无穷等比数列前n项和的极限即为等比数列的各项和,由此可得关于q的方程,解之即可.
解答:由题意可得0<q<1,
==
代入值可得,解得q=
故答案为:
点评:本题的考点是等比数列的前n项和,无穷等比数列前n项和的极限即为等比数列的各项和是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知无穷等比数列{an}各项的和是2,则首项a1的取值范围是
(0,2)∪(2,4)
(0,2)∪(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

在无穷等比数列{an}中,
lim
n→∞
(a1+a2+…+an)=
1
2
,则首项a1的取值范围是
(0,
1
2
)∪(
1
2
,1)
(0,
1
2
)∪(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)已知无穷等比数列{an}(n为正整数)的首项a1=
1
2
,公比q=
1
2
.设Tn=a12+a32+…+a2n-12,则
lim
n→+∞
Tn
=
4
15
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•奉贤区一模)在无穷等比数列{an}中,a1=1,q=
1
2
,记Tn=
a
2
2
+
a
2
4
+
a
2
6
+…+
a
2
2n
,则
lim
n→∞
Tn
等于
4
15
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

各项都为正数的无穷等比数列{an},满足a2=m,a4=t,且
x=m
y=t
是增广矩阵
3  -1 22
0    1 2
的线性方程组
a11x+a12y=c1
a21x+a22y=c2
的解,则无穷等比数列{an}各项和的数值是
 

查看答案和解析>>

同步练习册答案