精英家教网 > 高中数学 > 题目详情

给出下列五个命题:
①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;
②命题“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”;
③命题“若x=y,则sinx=siny”的逆否命题为真命题;
④“x=-1”是“x2-5x-6=0”的必要不充分条件;
⑤连掷两次骰子分别得到点数m,n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是数学公式
其中真命题的个数为


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
A
分析:由四种命题的定义,可以判断①的真假;由特称命题的否定方法,可以判断②的真假;判断原命题的真假,再根据互为逆否的两个命题真假性相同,可以判断③的真假;根据充要条件的定义,可以判断④的真假;根据古典概型概率计算方法,可以判断⑤的真假;进而得到答案.
解答:命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故①为假命题;
命题“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1≥0”,故②为假命题;
命题“若x=y,则sinx=siny”为真命题,根据互为逆否的两个命题真假性相同,故③为真命题;
“x=-1”是“x2-5x-6=0”的充分不必要条件,故④为假命题;
连掷两次骰子分别得到点数m,n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是,故⑤为真命题;
故选A
点评:本题考查的知识点是命题的真假判断与应用,其中根据四种命题的定义及性质,特殊命题的否定,充要条件的定义,古典概型概率计算公式等基本知识点判断题目中已知命题的真假是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列五个命题:
①在三角形ABC中,若A>B则sinA>sinB;
②若数列{bn}的前n项和Sn=n2+2n+1.则数列{bn}从第二项起成等差数列;
③已知Sn是等差数列{an}的前n项和,若S7>S8则S9>S8
④已知等差数列{an}的前n项和为Sn,若a5=5a3
S9S5
=9;
⑤若{an}是等比数列,且Sn=3n+1+r,则r=-1;
其中正确命题的序号为:
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若4a=3,log45=b,则log4
95
=a2-b

②函数f(x)=0.51+2x-x2的单调递减区间是[1,+∞);
③m≥-1,则函数y=lg(x2-2x-m)的值域为R;
④若映射f:A→B为单调函数,则对于任意b∈B,它至多有一个原象;
⑤函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则f(e3)=3.
其中正确的命题是
③④⑤
③④⑤
(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中正确的命题有
②③⑤
②③⑤
(填序号).
①若
a
b
=0,则一定有
a
b
;  ②?x,y∈R,sin(x-y)=sinx-siny;
③?a∈(0,1)∪(1,+∞),函数f(x)=a1-2x+1都恒过定点(
1
2
,2)

④方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F≥0;
⑤若存在有序实数对(x,y),使得
OP
=x
OA
+y
OB
,则O,P,A,B四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)已知f(x)在x∈[a,b]上的最大值为M,最小值为m,给出下列五个命题:
①若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,m];
②若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,M];
③若关于x的方程p=f(x)在区间[a,b]上有解,则p的取值范围是[m,M];
④若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,m];
⑤若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,M];
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中正确的命题有
②③④
②③④
(填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积S=
π
sinxdx

C
r+1
n+1
=
C
r+1
n
+
C
r
n

③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的过程中,由假设n=k成立推到n=k+1成立时,只需证明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

同步练习册答案