精英家教网 > 高中数学 > 题目详情
6.已知椭圆$\frac{{x}^{2}}{2}$+y2=1上两个不同的点A,B关于直线$y=mx+\frac{1}{2}(m≠0)$对称.
(1)若已知$C(0,\frac{1}{2})$,M为椭圆上动点,证明:$|{MC}|≤\frac{{\sqrt{10}}}{2}$;
(2)求实数m的取值范围;
(3)求△AOB面积的最大值(O为坐标原点).

分析 (1)设M(x,y),则$\frac{{x}^{2}}{2}$+y2=1,利用两点之间的距离公式、二次函数的单调性即可得出.
(2)由题意知m≠0,可设直线AB的方程为$y=-\frac{1}{m}x+b$.与椭圆方程联立得$\frac{{2+{m^2}}}{{2{m^2}}}{x^2}-\frac{2b}{m}x+{b^2}-1=0$.△>0,再利用中点坐标公式、根与系数的关系即可得出.
(3)利用弦长公式、点到直线的距离公式可得S△AOB,再利用二次函数的单调性即可得出.

解答 (1)证明:设M(x,y),则$\frac{{x}^{2}}{2}$+y2=1,
于是$|{MC}|=\sqrt{{x^2}+{{(y-\frac{1}{2})}^2}}$=$\sqrt{2-2{y^2}+{{(y-\frac{1}{2})}^2}}$=$\sqrt{-{y^2}-y+\frac{9}{4}}$=$\sqrt{-{{(y+\frac{1}{2})}^2}+\frac{5}{2}}$,
∵-1≤y≤1,
∴当$y=-\frac{1}{2}$时,${|{MC}|_{max}}=\frac{{\sqrt{10}}}{2}$.即$|{MC}|≤\frac{{\sqrt{10}}}{2}$.
(2)解:由题意知m≠0,可设直线AB的方程为$y=-\frac{1}{m}x+b$.
由$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=-\frac{1}{m}x+b\end{array}\right.$消去y,得$\frac{{2+{m^2}}}{{2{m^2}}}{x^2}-\frac{2b}{m}x+{b^2}-1=0$.
∵直线$y=-\frac{1}{m}x+b$与椭圆$\frac{x^2}{2}+{y^2}=1$有两个不同的交点,
∴$△=-2{b^2}+2+\frac{4}{m^2}>0$,
即${b^2}<1+\frac{2}{m^2}$  ①
将AB中点$M(\frac{2mb}{{{m^2}+2}},\frac{{{m^2}b}}{{{m^2}+2}})$,
代入直线方程$y=mx+\frac{1}{2}$解得$b=-\frac{{{m^2}+2}}{{2{m^2}}}$  ②
由①②得$m<-\frac{{\sqrt{6}}}{3}$或$m>\frac{{\sqrt{6}}}{3}$.
(3)解:令$t=\frac{1}{m}∈(-\frac{{\sqrt{6}}}{2},0)∪(0,\frac{{\sqrt{6}}}{2})$,即${t^2}=(0,\frac{3}{2})$,
则 $|{AB}|=\sqrt{{t^2}+1}•\frac{{\sqrt{-2{t^4}+2{t^2}+\frac{3}{2}}}}{{{t^2}+\frac{1}{2}}}$,
且O到直线AB的距离为$d=\frac{{{t^2}+\frac{1}{2}}}{{\sqrt{{t^2}+1}}}$,
设△AOB的面积为S(t),∴$S(t)=\frac{1}{2}|{AB}|•d=\frac{1}{2}\sqrt{-2{{({t^2}-\frac{1}{2})}^2}+2}≤\frac{{\sqrt{2}}}{2}$,
当且仅当${t^2}=\frac{1}{2}$时,等号成立.
故△AOB面积的最大值为$\frac{{\sqrt{2}}}{2}$.

点评 本题考查了椭圆的定义及其标准方程、直线与椭圆相交弦长问题、点到直线的距离公式、三角形面积计算公式、轴对称问题、两点之间的距离公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若f(x)=(a-3)x${\;}^{{a}^{2}-3a-2}$既是幂函数又是二次函数,则a的值是(  )
A.-1B.4C.-1或4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z1=3-i,z2=1+i,$\overline{{z}_{1}}$是z1的共轭复数,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$=(  )
A.1+iB.1-iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,M是正方体ABCD-A1B1C1D1对角线AC1上的动点,过点M作垂直于面ACC1A1的直线与正方体表面分别交于P、Q两点,设AM=x,PQ=y,则函数y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知ω,t>0,函数$f(x)=|{\begin{array}{l}{\sqrt{3}}&{sinωx}\\ 1&{cosωx}\end{array}}|$的最小正周期为2π,将f(x)的图象向左平移t个单位,所得图象对应的函数为偶函数,则t的最小值为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆心在点A(a,$\frac{π}{2}$),半径等于a的圆的极坐标方程是ρ=2asinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A,B两点,点O为坐标原点.
(1)求抛物线准线方程;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}是等差数列,a2和a2014是方程5x2-6x+1=0的两根,则数列{an}的前2015项的和为1209.

查看答案和解析>>

同步练习册答案