精英家教网 > 高中数学 > 题目详情
若椭圆C1(a1>b1>0)和椭圆C2(a2>b2>0)的离心率相同,且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点; 

;              
④a1-a2<b1-b2
则所有结论正确的序号是   
【答案】分析:利用两椭圆有相同的离心率,可知两个椭圆a,b,c之间的关系,进而分别判断各结论是否正确.
解答:解:因为两椭圆有相同的离心率,所以
①因为,即,所以,即成立,因为a1>a2,所以b1>b2.即椭圆C1和椭圆C2一定没有公共点,所以①正确.
②由①知即成立,所以②正确.
③因为,且a1>a2,所以,即,所以③错误.
④由②知,所以=>b1-b2,所以④错误.
故所有结论正确的序号是①②.
故答案为:①②.
点评:本题考查了椭圆的性质以及与椭圆a,b,c有关的计算和推理,运算量较大,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源:2013年山东省济南市高考数学二模试卷(理科)(解析版) 题型:选择题

若椭圆C1(a1>b1>0)和椭圆C2(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是( )
A.②③④
B.①③④
C.①②④
D.①②③

查看答案和解析>>

科目:高中数学 来源:2013年高考百天仿真冲刺数学试卷10(理科)(解析版) 题型:选择题

若椭圆C1(a1>b1>0)和椭圆C2(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是( )
A.②③④
B.①③④
C.①②④
D.①②③

查看答案和解析>>

科目:高中数学 来源:2011年北京市海淀区高考数学二模试卷(理科)(解析版) 题型:选择题

若椭圆C1(a1>b1>0)和椭圆C2(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是( )
A.②③④
B.①③④
C.①②④
D.①②③

查看答案和解析>>

科目:高中数学 来源:2011年北京市海淀区高考数学二模试卷(文科)(解析版) 题型:选择题

若椭圆C1(a1>b1>0)和椭圆C2(a2>b2>0)的焦点相同且a1>a2.给出如下四个结论:
①椭圆C1和椭圆C2一定没有公共点;

③a12-a22=b12-b22
④a1-a2<b1-b2
其中,所有正确结论的序号是( )
A.②③④
B.①③④
C.①②④
D.①②③

查看答案和解析>>

同步练习册答案