(2009山东卷文) (本小题满分14分)
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
当m=0时,方程表示两直线,方程为;
当时, 方程表示的是圆
当且时,方程表示的是椭圆;
当时,方程表示的是双曲线.
1
解(1)因为,,,
所以, 即.
程
(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,
要使切线与轨迹E恒有两个交点A,B,
则使△=,
即,即, 且
,
要使, 需使,即,
所以, 即且, 即恒成立.
所以又因为直线为圆心在原点的圆的一条切线,
所以圆的半径为,, 所求的圆为.
当切线的斜率不存在时,切线为,与交于点或也满足.
综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.
(3)当时,轨迹E的方程为,设直线的方程为,因为直线与圆C:(1<R<2)相切于A1, 由(2)知, 即 ①,
因为与轨迹E只有一个公共点B1,
由(2)知得,
即有唯一解
则△=, 即, ②
由①②得, 此时A,B重合为B1(x1,y1)点,
由 中,所以,,
B1(x1,y1)点在椭圆上,所以,所以,
在直角三角形OA1B1中,因为当且仅当时取等号,所以,即
当时|A1B1|取得最大值,程
科目:高中数学 来源: 题型:
(2009山东卷文)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009山东卷文)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009山东卷文)(本小题满分14分)
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com