¹ýÇúÏßÉÏÒ»µãÓëÒԴ˵ãΪÇеãµÄÇÐÏß´¹Ö±µÄÖ±Ïߣ¬½Ð×öÇúÏßÔڸõãµÄ·¨Ïߣ®
ÒÑÖªÅ×ÎïÏßCµÄ·½³ÌΪy=ax2£¨a£¾0£¬x¡Ù0£©£®µãM£¨x0£¬y0£©ÊÇCÉÏÈÎÒâµã£¬¹ýµãM×÷CµÄÇÐÏßl£¬·¨Ïßm£®
£¨I£©Çó·¨ÏßmÓëÅ×ÎïÏßCµÄÁíÒ»¸ö½»µãNµÄºá×ø±êxNÈ¡Öµ·¶Î§£»
£¨II£©ÉèµãFÊÇÅ×ÎïÏߵĽ¹µã£¬Á¬½ÓFM£¬¹ýµãM×÷ƽÐÐÓÚyÖáµÄÖ±Ïßn£¬ÉèmÓëxÖáµÄ½»µãΪS£¬nÓëxÖáµÄ½»µãΪK£¬ÉèlÓëxÖáµÄ½»µãΪT£¬ÇóÖ¤¡ÏSMK=¡ÏFMN
·ÖÎö£º£¨¢ñ£©½«Ö±ÏßmµÄ·½³ÌÓëÅ×ÎïÏßCµÄ·½³Ì×é³É·½³Ì×飬ÏûÈ¥yµÃµ½¹ØÓÚxµÄ·½³Ì£¬ÔÙ¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵÇóµÃNµãµÄºá×ø±êµÄ±í´ïʽ£¬×îºó¸ù¾Ýº¯ÊýµÄÖµÓòÇó³öÆ䷶Χ¼´¿É£»
£¨¢ò£©ÓûÖ¤¡ÏSMK=¡ÏFMN£¬¼´ÒªÖ¤¡ÏTMK=¡ÏFMT£¬ÎªÁËÖ¤½ÇÏàµÈ£¬Ö»ÒªÖ¤Ã÷Ö±ÏßnÊÇ¡ÏFMKµÄƽ·ÖÏߣ¬¹ÊÖ»ÒªÖ¤Ã÷Tµ½Ö±ÏßnºÍÖ±ÏßMF¾àÀëÏàµÈ¼´¿É£®
½â´ð£º½â£º£¨¢ñ£©Ò×µÃÖ±ÏßmµÄ·½³Ì£ºy-y0=-
1
2ax0
(x-x0)
Óëy=ax2
ÁªÁ¢µÃax2+
x
2ax0
-
1
2a
-a
x
2
0
=0
£¬
¡àxNx0=-
1
2a2
-
x
2
0
£¬xN=-
1
2a2x0
-x0
£¬
Ò×µÃxN¡Ê(-¡Þ£¬-
2
2
]¡È[
2
2
£¬+¡Þ)

¼´xNÈ¡Öµ·¶Î§ÊÇ(-¡Þ£¬-
2
2
]¡È[
2
2
£¬+¡Þ)
£»£¨6·Ö£©
£¨¢ò£©ÓÉÌâÒâµÃlµÄ·½³Ìy-y0=2ax0£¨x-x0£©£¬Áîy=0µÃxT=
x0
2
£¬¡àT(
x0
2
£¬0)

´ËʱTµ½Ö±ÏßnµÄ¾àÀëΪ|
x0
2
|
£¬ÓÖMF·½³Ì£ºy-
1
4a
=
a
x
2
0
-
1
4a
x0
(x-0)
£¬
ÉèTµ½MF¾àÀëΪd£¬Ôòd=
|(a
x
2
0
-
1
4a
)
x0
2
+
x0
4a
|
x
2
0
+(a
x
2
0
-
1
4a
)
2
=|
x0
2
|
£¬
¡à¡ÏTMK=¡ÏFMT£¬¡à¡ÏSMK=¡ÏFMN£®£¨13·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÅ×ÎïÏߵıê×¼·½³Ì¡¢Ö±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣮ֱÏßÓëԲ׶ÇúÏßÁªÏµÔÚÒ»ÆðµÄ×ÛºÏÌâÔڸ߿¼ÖжàÒԸߵµÌ⡢ѹÖáÌâ³öÏÖ£¬Ö÷ÒªÉ漰λÖùØϵµÄÅж¨£¬ÏÒ³¤ÎÊÌâ¡¢×îÖµÎÊÌâ¡¢¶Ô³ÆÎÊÌâ¡¢¹ì¼£ÎÊÌâµÈ£¬Í»³ö¿¼²éÁËÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛ¡¢º¯ÊýÓë·½³Ì¡¢µÈ¼Ûת»¯µÈÊýѧ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äê°²»ÕÊ¡ºÏ·ÊÒ»Öи߿¼Êýѧ³å´Ì×îºóÒ»¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¹ýÇúÏßÉÏÒ»µãÓëÒԴ˵ãΪÇеãµÄÇÐÏß´¹Ö±µÄÖ±Ïߣ¬½Ð×öÇúÏßÔڸõãµÄ·¨Ïߣ®
ÒÑÖªÅ×ÎïÏßCµÄ·½³ÌΪy=ax2£¨a£¾0£¬x¡Ù0£©£®µãM£¨x£¬y£©ÊÇCÉÏÈÎÒâµã£¬¹ýµãM×÷CµÄÇÐÏßl£¬·¨Ïßm£®
£¨I£©Çó·¨ÏßmÓëÅ×ÎïÏßCµÄÁíÒ»¸ö½»µãNµÄºá×ø±êxNÈ¡Öµ·¶Î§£»
£¨II£©ÉèµãFÊÇÅ×ÎïÏߵĽ¹µã£¬Á¬½ÓFM£¬¹ýµãM×÷ƽÐÐÓÚyÖáµÄÖ±Ïßn£¬ÉèmÓëxÖáµÄ½»µãΪS£¬nÓëxÖáµÄ½»µãΪK£¬ÉèlÓëxÖáµÄ½»µãΪT£¬ÇóÖ¤¡ÏSMK=¡ÏFMN

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸