精英家教网 > 高中数学 > 题目详情
把椭圆
x2
25
+
y2
9
=1
绕左焦点按顺时针方向旋转90°,则所得椭圆的准线方程为______.
由题意得,把椭圆
x2
25
+
y2
9
=1
绕左焦点按顺时针方向旋转90°,
则所得椭圆的准线与椭圆
(y-4)2
25
+
x2
9
=1
的准线重合,
∵椭圆
(y-4)2
25
+
x2
9
=1
的a=5,b=3,c=4,
故其准线方程为:y=4±
a 2
c
=4±
25
4

y=
9
4
y=-
41
4

故答案为:y=
9
4
y=-
41
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
②“-
1
2
<x<0
”是“2x2-5x-3<0”必要不充分条件;
③“若xy=0,则x、y中至少有一个为0”的否命题是真命题.;
④若p是q的充分条件,r是q的必要条件,r是s的充要条件,则s是p的必要条件;
其中是真命题的有:
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同焦点;
②“-
1
2
<x<0”是“2x2-5x-3<0”必要不充分条件;
③若
a
b
共线,则
a
b
所在的直线平行;
④若
a
b
c
三向量两两共面,则
a
b
c
三向量一定也共面;
⑤?x∈R,x2-3x+3≠0.
其中是真命题的有:
①⑤
①⑤
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:①双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点;②(lnx)=
1
xlge
;③(tanx)=
1
cos2x
;④(
u
v
=
uv-vu
v2
;⑤?x∈R,x2-3x+3≠0.其中是真命题的有:
①③⑤
①③⑤
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列命题:
①双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同焦点;
②“-
1
2
<x<0”是“2x2-5x-3<0”必要不充分条件;
③若
a
b
共线,则
a
b
所在的直线平行;
④若
a
b
c
三向量两两共面,则
a
b
c
三向量一定也共面;
⑤?x∈R,x2-3x+3≠0.
其中是真命题的有:______.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列命题:
①双曲线
x2
25
-
92
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
②“-
1
2
<x<0
”是“2x2-5x-3<0”必要不充分条件;
③“若xy=0,则x、y中至少有一个为0”的否命题是真命题.;
④若p是q的充分条件,r是q的必要条件,r是s的充要条件,则s是p的必要条件;
其中是真命题的有:______.(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案