精英家教网 > 高中数学 > 题目详情

三角形的面积为为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为(   )

A、   B、   C、 (分别为四面体的四个面的面积,r为四面体内切球的半径)

 D、

 

【答案】

C

【解析】解:利用三角形的内切圆的圆心,将三角形分割为三个小的三角形,结合面积和相等得到为三角形的边长,r为三角形内切圆的半径,那么类推导空间中,四面体中的内切球的球心,将四面体分割为4个小的三棱锥的体积,相加得到整个四面体的体积,因此选C

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•静安区一模)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(2)求△EMN的面积S(平方米)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是正方形,其中AB=2米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(2)求△EMN的面积S(平方米)的最大值.

查看答案和解析>>

科目:高中数学 来源:2002年全国各省市高考模拟试题汇编 题型:044

∈C,且满足∈(,π).

(Ⅰ)求的三角形式;

(Ⅱ)设分别对应复平面上点,且,arg()=,求及三角形的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:2013年上海市静安区高考数学一模试卷(理科)(解析版) 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(2)求△EMN的面积S(平方米)的最大值.

查看答案和解析>>

科目:高中数学 来源:2013年上海市静安区高考数学一模试卷(文科)(解析版) 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是正方形,其中AB=2米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(2)求△EMN的面积S(平方米)的最大值.

查看答案和解析>>

同步练习册答案