精英家教网 > 高中数学 > 题目详情

已知f(x)=f(2x+1)3,若(-1)=8,则f(-1)=

[  ]
A.

4

B.

5

C.

-2

D.

-3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:013

已知f(x)=-x2+px+q的对称轴为x=-1, 则

[  ]

A. f(-2)>f(1)     B. f(-2)<f(1)

C. f(-2)=f(1)     D.f(-2)与f(1)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

已知函数f(x)是y=-1(x∈R)的反函数,函数g(x)的图象与函数y=-的图象关于y轴对称,设F(x)=f(x)+g(x),

(1)求函数F(x)的解析式及定义域;

(2)试问在函数F(x)的图象上是否存在两个不同的点A,B,使直线AB恰好与y轴垂直?若存在,求出A,B的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:101网校同步练习 高三数学 苏教版(新课标·2004年初审) 苏教版 题型:044

已知f(x)=ax4+bx2+c的图像经过点(0,1),且在x=1处的切线方程是y=x-2

(1)求y=f(x)的解析式;(2)求y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:专题复习一 函数及其应用 题型:044

已知f(x)=loga(ax-1)(a>0,且a≠1)

(1)求f(x)的定义域;

(2)讨论f(x)的增减性;

(3)解方程f(2x)=f-1(x).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省高三8月月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

同步练习册答案