精英家教网 > 高中数学 > 题目详情
n∈{-1,
1
2
,1,2,3}
,则使得f(x)=xn为奇函数,且在区间(0,+∞)上单调递减的n的个数是(  )
分析:根据幂函数的指数大于0,则在区间(0,+∞)上单调递增,可排除n=
1
2
,1,2,3的可能,然后判定当n=-1时,f(x)=
1
x
是否满足条件即可.
解答:解:f(x)=xn,当n>0时函数f(x)在区间(0,+∞)上单调递增,故
1
2
,1,2,3都不符合题意
当n=-1时,f(x)=
1
x
,定义域为{x|x≠0},f(-x)=-
1
x
=-f(x),在区间(0,+∞)上单调递减,故正确
故选A.
点评:本题主要考查了幂函数的性质,同时考查了函数奇偶性的判定,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•松江区二模)如图所示,向量
BC
的模是向量
AB
的模的t倍,
AB
BC
的夹角为θ,那么我们称向量
AB
经过一次(t,θ)变换得到向量
BC
.在直角坐标平面内,设起始向量
OA1
=(4,0)
,向量
OA1
经过n-1次(
1
2
3
)
变换得到的向量为
An-1An
(n∈N*,n>1)
,其中AiAi+1Ai+2(i∈N*)为逆时针排列,记Ai坐标为(ai,bi)(i∈N*),则下列命题中不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是首项为1的正项数列,且(n+1)an+12-nan2+an+1·an=0(n≥1,nN),试归纳出这个数列的通项公式.

      

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是首项为1的正项数列,且(n+1)an+12-nan2+an+1an=0(n∈N*),则它的通项公式an=_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

n∈{-1,
1
2
,1,2,3}
,则使得f(x)=xn为奇函数,且在区间(0,+∞)上单调递减的n的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案