精英家教网 > 高中数学 > 题目详情

如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.

⑴求的长度;

⑵在线段上取一点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?

 

【答案】

;⑵当时,取得最小值.

【解析】

试题分析:⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在,再由两角和的正切公式即可求出的值,又,可求出的值; ⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.

试题解析:⑴作,垂足为,则,设

       2分

,化简得,解之得,(舍)

答:的长度为.                        6分

⑵设,则

.         8分

,令,因为,得,当时,是减函数;当      时,是增函数,

所以,当时,取得最小值,即取得最小值,   12分

因为恒成立,所以,所以

因为上是增函数,所以当时,取得最小值.

答:当时,取得最小值.            14分

考点:1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑AB看建筑物CD的张角∠CAD=45°,求建筑物AB和CD的底部之间的距离BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角∠CAD=45°.
(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为∠APB=α,∠DPC=β,问点P在何处时,α+β最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两座建筑物AB,CD的高度分别为9m和15m,从建筑物AB的顶部看建筑物CD的张角∠CAD=45°.
(1)求建筑物AB和CD的底部之间的距离BD;
(2)求∠ADB的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.

(1) 求的长度;

(2) 在线段上取一点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?

查看答案和解析>>

同步练习册答案