精英家教网 > 高中数学 > 题目详情

已知椭圆C的中心为坐标原点,F1、F2分别为它的左、右焦点,直线x=4为它的一条准线,又知椭圆C上存在点M使

   (1)求椭圆C的方程;

   (2)若PQ为过椭圆焦点F2的弦,且内切圆面积最大时实数的值.

解:(1)据题意,设椭圆C的方程为

∵直线x=4    为椭圆C的准线,  ∴

,  ∴M为椭圆C短轴上的顶点,

,△F1MF2为等边三角形

,∴椭圆C的方程为

(2)显然直线PQ不与x轴重合,当PQ与x轴垂直,即直线PQ分斜率不存在时,

当直线PQ斜率存在时,设它的斜率为k,

则直线PQ的方程为,代入椭圆C的方程,消去x的并整理得:

    则

设4k2+3=t,则t>3,此时

综上,直线PQ与x轴垂直时,△PF1Q的面积最大,且最大面积为3.

设△PF1Q内切圆半径为r,则

时,△PF1Q内切圆面积最大,此时不存在,

直线PQ与x轴垂直,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心为坐标原点,焦点在y轴上,离心率e=
2
2
该椭圆C与直线l:y=
2
x在第一象限交于F点,且直线l被椭圆C截得的弦长为2
3
,过F作倾斜角互补的两直线FM,FN分别与椭圆C交于M,N两点(F与M,N均不重合).
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线MN的斜率为定值;
(Ⅲ)求三角形FMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心为坐标原点O,一个长轴端点为(0,1),短轴端点和焦点所组成的四边形为正方形,若直线l与y轴交于点P(0,m),与椭圆C交于不同的两点A、B,且
AP
=3
PB

(Ⅰ)求椭圆C的离心率及其标准方程;
(Ⅱ)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心为坐标原点,离心率为
2
2
,直线?与椭圆C相切于M点,F1、F2为椭圆的左右焦点,且|MF1|+|MF2|=2
2

(1)求椭圆C的标准方程;
(2)若直线m过F1点,且与椭圆相交于A、B两点,|AF2|+|BF2|=
8
2
3
,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心为坐标原点O,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
AP
=2
PB

(Ⅰ)求椭圆方程;
(Ⅱ)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年长沙一中一模理)(13分)已知椭圆C的中心为坐标原点O,焦点F1F2x轴上,离心率为,点Q在椭圆C上且满足条件:= 2, 2

(Ⅰ)求椭圆C的方程;

     (Ⅱ)设A、B为椭圆上不同的两点,且满足OAOB,若(R)且,试问:是否为定值.若为定值,请求出;若不为定值,请说明理由。

查看答案和解析>>

同步练习册答案