精英家教网 > 高中数学 > 题目详情
3.已知 f(x)=2+1og2x,x∈[1,4].求y=[f(x)]2-2f(x)的最大值及此时x的值.

分析 根据f(x)的定义域为[1,4]先求出y的定义域为[0,2],然后即可确定y=[f(x)]2-2f(x)的最大值及相应的x的值.

解答 解:y=(2+log2x)2-2(2+log2x)=(log3x+1)2-1
∵1≤x≤4,∴0≤log3x≤2.
∴当x=4时,y=[f(x)]2-2f(x)有最大值8.

点评 本题主要考察了对数函数图象与性质的综合应用,其中根据f(x)的定义域先求出y的定义域是正确解题的关键步骤,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)计算log2.56.25+lg0.01+ln$\sqrt{e}$-21+log23
(2)计算64${\;}^{-\frac{1}{3}}$-(-$\frac{3\sqrt{2}}{2}$)0+[(2)-3]${\;}^{\frac{4}{3}}$+16-0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式6${\;}^{({x}^{2}+x-2)}$<1的解集是(  )
A.(-1,2)B.(-2,1)C.RD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面向量$\overrightarrow{a}$=(sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$,cos2$\frac{ωx}{2}$),$\overrightarrow{b}$=(cosφ,sinφ),函数f(x)=2A($\overrightarrow{a}$•$\overrightarrow{b}$)-Asinφ+k(其中A>0,|φ|<$\frac{π}{2}$)的图象如图所示.
(1)求函数f(x);
(2)如何由函数y=-sinx的图象得到函数y=f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.f(x)=ax2+bx+c满足f(0)=3,对称轴是直线x=-1,最小值为2,则该函数的表达式为(  )
A.f(x)=x2-2x-3B.f(x)=x2+2x-3C.f(x)=x2-2x+3D.f(x)=x2+2x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司经过市场调查发现,某种商品在最初上市的几个月内销量很好,几乎能将所生产的产品销售出去,为了最求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后将商品的生产量翻两番,则平均每月生产量的增长率,约为14.87%.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于给定的函数f(x)=ax-a-x(x∈R,a>0,且a≠1),下面给出五个命题,其中真命题是①③④(只需写出所有真命题的编号)
①函数f(x)的图象关于原点对称;
②函数f(x)在R上不具有单调性;
③函数f(|x|)的图象关于y轴对称;
④当0<a<1时,函数f(|x|)的最大值是0;
⑤当a>1时,函数f(|x|)的最大值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,准备在扇形空地AOB上修建一个山水景观OPQ,己知∠AOB=$\frac{2}{3}$π,OA=lkm,点P在扇形弧上,PQ∥OA交OB于点Q,记∠POA=x.
(Ⅰ)当Q是OB中点时,求PQ的长;
(Ⅱ)求使山水景观OPQ的面积S最大时x的值; 
(Ⅲ)为了方便路人休闲行走,要在扇形空地上铺设一条从入口A到出口B的观光道路,道路由弧$\widehat{AP}$,线段PQ以及线段QB组成,怎样设计才能使得观光道路最长?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在如图所示的表格中,如果第一格填上一个数后,每一行成等比数列,每一列成等差数列,则x+y+z=2.

查看答案和解析>>

同步练习册答案