【题目】已知函数x2=4y的焦点是F,直线l与抛物线交于A,B两点.
(1)若直线l过焦点F且斜率为1,求线段AB的长;
(2)若直线l与y轴不垂直,且|FA|+|FB|=3.证明:线段AB的中垂线恒过定点,并求出该定点的坐标.
【答案】
(1)解:由x2=4y,得抛物线焦点F(0,1),
则直线l的方程为y=x+1,
联立
,得y2﹣6y+1=0.
设A(x1,y1),B(x2,y2),
则y1+y2=6,
∴|AB|=y1+y2+2=8;
(2)证明:由题意可知,直线l的斜率存在且不为0,
设直线l的方程为y=kx+b,
联立
,得y2﹣(4k2+2b)y+b2=0.
则
,
∴|FA|+|FB|=
,
则
,
∴
,
∴A,B的中点坐标为(
),
则AB的中垂线恒过定点(
)
【解析】(1)由题意写出直线方程的斜截式,联立直线方程和抛物线方程,化为关于y的一元二次方程,利用根与系数的关系结合焦半径公式求得答案;(2)设直线l的方程y=kx+b,联立直线方程和抛物线方程,由|FA|+|FB|=3得到k与b的关系,利用根与系数的关系求得A,B的中点坐标,由线段AB的中点为定点可得答案.
科目:高中数学 来源: 题型:
【题目】定义运算:
=a1a4﹣a2a3 , 将函数f(x)=
(ω>0)的图象向左平移
个单位,所得图象对应的函数为偶函数,则ω的最小值是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n﹣1)an , 数列{bn}的前n项和为Sn , 若不等式Sn>kan+16n﹣26对一切n∈N*恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.
(1)求M的值;
(2)正数a,b,c满足a+2b+c=M,求证:
+
≥1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是( )
①甲抛出正面次数比乙抛出正面次数多;
②甲抛出反面次数比乙抛出正面次数少;
③甲抛出反面次数比甲抛出正面次数多;
④乙抛出正面次数与乙抛出反面次数一样多.
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>
时,f(x+
)=f(x﹣
).则f(6)=( )
A.﹣2
B.﹣1
C.0
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com