精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的前n项和为Sn且Sn=$\frac{1}{2}({n^2}+n),(n∈{N^*})$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${c_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,数列{cn}的前n项和Tn,求使${T_n}<\frac{37}{41}$成立的n的最大值.

分析 (Ⅰ)当n≥2时利用an=Sn-Sn-1化简,进而可知an=n;
(Ⅱ)通过(I)裂项可知cn=$\frac{1}{n}$-$\frac{1}{n+1}$,进而并项相加即得结论.

解答 解:(Ⅰ)∵Sn=$\frac{1}{2}({n^2}+n),(n∈{N^*})$,
∴当n≥2时,Sn-1=$\frac{1}{2}$[(n-1)2+n-1],
两式相减得:an=Sn-Sn-1
=$\frac{1}{2}$(2n-1+1)
=n,
又∵a1=$\frac{1}{2}$(1+1)=1满足上式,
∴数列{an}的通项公式an=n;
(Ⅱ)由(I)可知${c_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,
∴${T_n}<\frac{37}{41}$即$\frac{n}{n+1}$<$\frac{37}{41}$,
解得:n<$\frac{37}{4}$,又n∈N*
∴nmax=9.

点评 本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知命题P:在三角形ABC中,若A>B,则sinA>sinB;
命题Q:若随机变量X服从正态分布N(1,σ2),且X在(0,1)内取值的概率为0.4,
则X在(0,2)内取值的概率为0.8,下列命题中正确的是(  )
A.P∧QB.¬P∧QC.P∧¬QD.¬P∧¬Q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.A={(x,y)|x+y=2,x∈N,y∈N}={(0,2),(1,1),(2,0)}(用列举法表示结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知α为第二象限角,且sin(π+α)=-$\frac{1}{2}$,计算:
(1)cos(2π-α);
(2)tan(α-7π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.以A(1,-1),B(-2,0)为端点的线段的垂直平分线的方程是y=3x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《算法统宗》是中国古代数学名著,由明代数学家程大位编著.《算法统宗》对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有九節竹一莖,為因盛米不均平;下頭三節三升九,上梢四節貯三升;唯有中間二節竹,要將米數次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的.下端3节可盛米3.9升,上端4节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节的容积为(  )
A.2.1升B.2.2升C.2.3升D.2.4升

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列满足a0=$\frac{1}{3}$,及对于自然数n,an+1=an2+an,则$\sum_{n=0}^{2015}{\frac{1}{{{a_n}+1}}}$的整数部分是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l过点(1,2)且与直线2x-3y+1=0垂直,则l的方程是(  )
A.3x+2y-1=0B.3x+2y-7=0C.2x-3y+5=0D.2x-3y+8=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将一颗骰子先后抛掷2次,以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=9的内部的概率为$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案