精英家教网 > 高中数学 > 题目详情
下列四个命题中,真命题的个数为(   )(1)若两平面有三个公共点,则这两个平面重合;(2)两条直线可以确定一个平面;(3)若;(4)空间中,相交于同一点的三条直线在同一平面内。
A.1B.2C.3D.4
A

试题分析:(1)若两平面有三个公共点,则这两个平面重合,此命题错误,若两平面相交,两个平面也有三个公共点。
(2)两条直线可以确定一个平面,此命题错误,两条平行或相交直线确定一个平面,但两条异面直线不能确定一个平面。
(3)若;此命题正确,若两平面有一个公共点,则两平面有一条过该点的公共直线。
(4)空间中,相交于同一点的三条直线在同一平面内。此命题错误,比如空间直角坐标系中在x轴、y轴、z轴。
点评:本题主要考查对公理的理解即把握,熟练掌握平面的基本性质与公理是做本题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题11分)如图,在四棱锥中,平面,.

(1)证明:平面 
(2)求和平面所成角的正弦值
(3)求二面角的正切值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题13分)
如图,在四棱锥中,平面,底面是菱形,.分别是的中点.

(1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,下列命题正确的是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.

(1)求异面直线PA与CD所成的角;
(2)求证:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图, 空间四边形ABCD中,若
所成角为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m、是直线,a、β是平面,给出下列命题:
(1)若l垂直于α内两条相交直线,则l⊥α;
(2)若l平行于α,则l平行于α内的所有直线;
(3)若mα,lβ,且l⊥m,则α⊥β;
(4)若lβ,且l⊥α,则α⊥β;
(5)若mα,lβ,且α∥β,则l∥m.
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体A1B1C1D1­ABCD中,E是C1D1的中点,则异面直线DE与AC夹角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.

查看答案和解析>>

同步练习册答案