精英家教网 > 高中数学 > 题目详情
(2009•成都二模)过双曲线
x2
a2
-
y2
b2
=1(b>a>0)
的左焦点F(-c,0)(c>0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P.若
OE
=
1
2
(
OF
+
OP
)
,则双曲线的离心率为(  )
分析:先设双曲线的右焦点为F',则F'的坐标为(c,0),因为抛物线为y2=4cx,所以F'为抛物线的焦点,O为FF'的中点,又可得E为FP的中点,所以OE为△PFF'的中位线,得到|PF|=2b,再设P(x,y) 过点F作x轴的垂线,由勾股定理得出关于a,c的关系式,最后即可求得离心率.
解答:解:设双曲线的右焦点为F',则F'的坐标为(c,0)
∵抛物线为y2=4cx,
∴F'为抛物线的焦点,O为FF'的中点,
OE
=
1
2
(
OF
+
OP
)

∴E为FP的中点
∴OE为△PFF'的中位线,
∵O为FF'的中点
∴OE∥PF'
∵|OE|=a
∴|PF'|=2a
∵PF切圆O于E
∴OE⊥PF
∴PF'⊥PF,
∵|FF'|=2c
∴|PF|=2b
设P(x,y),则x+c=2a,∴x=2a-c
过点F作x轴的垂线,则点P到该垂线的距离为2a
由勾股定理 y2+4a2=4b2
∴4c(2a-c)+4a2=4(c2-a2
∴e2-e-1=0
∵e>1
∴e=
5
+1
2

故选B.
点评:本题主要考查双曲线的标准方程,以及双曲线的简单性质的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•成都二模)在△ABC中,a、b、c分别是三内角A、B、C所对边的长,若bsinA=asinC,则△ABC的形状(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都二模)质检部门将对12个厂家生产的婴幼儿奶粉进行质量抽检,若被抽检厂家的奶粉经检验合格,则该厂家的奶粉即可投放市场;若检验不合格,则该厂家的奶粉将不能投放市场且作废品处理.假定这12个厂家中只有2个厂家的奶粉存在质量问题(即检验不能合格),但不知道是哪两个厂家的奶粉.
(I)从中任意选取3个厂家的奶粉进行检验,求至少有2个厂家的奶粉检验合格的概率;
(Ⅱ)每次从中任意抽取一个厂家的奶粉进行检验(抽检不重复),记首次抽检到合格奶粉时已经检验出奶粉存在质量问题的厂家个数为随即变量ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都二模)已知集合P={x|x2-2x+1=0,x∈R},则集合P的子集个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都二模)化简复数i3-
1+i
1-i
的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都二模)已知函数f(x)的定义域为[0,1),则函数f(1-x)的定义域为(  )

查看答案和解析>>

同步练习册答案