精英家教网 > 高中数学 > 题目详情
(2013•海淀区一模)抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当△FPM为等边三角形时,其面积为(  )
分析:利用抛物线的定义得出PM垂直于抛物线的准线,设P(
m2
4
,m),求出△PMF的边长,写出有关点的坐标,利用两点距离的公式得到FM,列出方程求出m的值,得到等边三角形的边长,从而求出其面积.
解答:解:据题意知,△PMF为等边三角形,PF=PM,
∴PM⊥抛物线的准线,
设P(
m2
4
,m),则M(-1,m),
等边三角形边长为1+
m2
4
,F(1,0)
所以由PM=FM,得1+
m2
4
=
(1+1)2+m2
,解得m=2
3

∴等边三角形边长为4,其面积为4
3

故选D.
点评:本题主要考查了抛物线的简单性质,直线与抛物线的综合问题.考查了学生综合把握所学知识和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知a>0,下列函数中,在区间(0,a)上一定是减函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=
2

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且
PN
NB
=
1
3

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)函数f(x)=
13
x3-kx,其中实数k为常数.
(I) 当k=4时,求函数的单调区间;
(II) 若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知圆M:(x-
2
2+y2=
7
3
,若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点为圆M的圆心,离心率为
2
2

(I)求椭圆C的方程;
(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

同步练习册答案