精英家教网 > 高中数学 > 题目详情

在正方体ABCD-A1B1C1D1中,PQ是异面直线A1D和AC的公垂线,则直线PQ与BD1的关系是________.

答案:平行
解析:

  判断直线PQ与BD1的关系可以用常规法解决,也可以直接探讨它们的方向向量的关系.如图,建立空间直角坐标系,设正方体的棱长为1,

  则A(1,0,0),B(1,1,0),C(0,1,0),A1(1,0,1),D1(0,0,1),

  则=(-1,1,0),=(1,0,1),=(-1,-1,1).

  设=(x,y,z).

  则

  令z=1,则=(-1,-1,1),

  ∴

  ∴PQ∥BD1


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,则A1B与D1E所成角的余弦值为(  )
A、
5
10
B、
10
10
C、
5
5
D、
10
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,AB与平面A1BC1所成角的正弦值为(  )
A、
6
3
B、
3
3
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

在正方体ABCD-A′B′C′D′中,点M是棱AA′的中点,点O是对角线BD′的中点.

(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;

(Ⅱ)求二面角M-BC′-B′的大小; 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

在正方体ABCD-A′B′C′D′中,点M是棱AA′的中点,点O是对角线BD′的中点.

(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;

(Ⅱ)求二面角M-BC′-B′的大小; 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(四川卷)解析版(文) 题型:解答题

 

在正方体ABCDA′BCD′中,点M是棱AA′的中点,点O是对角线BD′的中点.

(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;

(Ⅱ)求二面角MBC′-B′的大小;  

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案