精英家教网 > 高中数学 > 题目详情
若一个数列的第m项等于这个数列的前m项的积,则称该数列为“m积数列”若正项等比数列{an}是一个“2012积数列”,且a1>1,则其前n项积最大时n的值为
1005或1006
1005或1006
分析:利用新定义,求得数列{an}的第1006项为1,再利用a1>1,q>0,即可求得结论.
解答:解:由题意,a2012=a1a2…a2012,∴a1a2…a2011=1,∴a1q1005=1
∴数列{an}的第1006项为1
∵a1>1,q>0
∴前n项积最大时n的值为1005或1006
故答案为:1005或1006
点评:本题考查新定义,考查学生的计算能力,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省宿迁中学高考数学模拟试卷(解析版) 题型:解答题

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高考数学模拟试卷(解析版) 题型:解答题

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市锡山区羊尖高级中学高考数学模拟试卷(数学)(解析版) 题型:解答题

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

同步练习册答案