【题目】定义在R上的函数f(x)=ax2+x.
(Ⅰ)当a>0时,求证:对任意的x1,x2∈R都有[f(x1)+f(x2)]成立;
(Ⅱ)当x∈[0,2]时,|f(x)|≤1恒成立,求实数a的取值范围;
(Ⅲ)若a=,点p(m,n2)(m∈Z,n∈Z)是函数y=f(x)图象上的点,求m,n.
【答案】(Ⅰ)详见解析(II)-≤a≤-(Ⅲ)m=n=0或者m=-4,n=0
【解析】
(Ⅰ)作差比较;
(Ⅱ)分离变量后再将恒成立转化为最值;
(Ⅲ)根据两个整数的和与积都为偶数,得这两个整数均为偶数.
解:(Ⅰ)证明:∵[f(x1)+f(x2)]-f()
=(ax12+x1+ax22+x2)-a()2-
=,
∵a>0,∴[f(x1)+f(x2)]-f()≥0,
∴[f(x1)+f(x2)]≥f().
(Ⅱ)当x=0时,|f(x)|≤1显然成立,此时a∈R;
当x∈(0,2]时,|f(x)|≤1-1≤ax2+x≤1≤a≤
-()2-≤a≤()2-恒成立,
∵x∈(0,2],∴-()2-有最大值-,()2-有最小值-,
∴-≤a≤-.
(Ⅲ)∵a=,∴f(x)=x2+x,
∵P(m,n2)在函数f(x)的图象上,∴m2+m=n2,
变形得(m+2)2-4n2=4,
∴(m+2-2n)(m+2+2n)=4,且m∈Z,n∈Z,
∵(m+2-2n)+(m+2+2n)=2m+4为偶数,
∴m+2-2n与m+2+2n同为偶数,
∴或
解得:或
故答案为:m=n=0或者m=-4,n=0.
科目:高中数学 来源: 题型:
【题目】下列叙述:
①化简的结果为﹣.
②函数y=在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;
③函数y=log3x+x2﹣2在定义域内只有一个零点;
④定义域内任意两个变量x1,x2,都有,则f(x)在定义域内是增函数.
其中正确的结论序号是_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差数列,求数列{an}的通项公式;
(2)设双曲线x2﹣ =1的离心率为en , 且e2=2,求e12+e22+…+en2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点.
(1)求证:PA∥平面BMD;
(2)求证:AD⊥PB;
(3)若AB=PD=2,求点A到平面BMD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱ABC-A1B1C1,底面△ABC的边长AB=1,侧棱长为,P是A1B1的中点,E、F、G分别是AC,BC,PC的中点.
(1)求FG与BB1所成角的大小;
(2)求证:平面EFG∥平面ABB1A1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com