精英家教网 > 高中数学 > 题目详情
18.已知幂函数f(x)的图象经过点(9,3),则$f(\frac{1}{4})$=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{16}$

分析 设幂函数f(x)=xα,把点(9,3)代入即可解出函数的解析式,然后求解函数值.

解答 解:设幂函数f(x)=xα,把点(9,3)代入可得3=9α,解得α=$\frac{1}{2}$.
∴f(x)=$\sqrt{x}$.
∴$f(\frac{1}{4})$=$\sqrt{\frac{1}{4}}$=$\frac{1}{2}$.
故选:B.

点评 本题考查了幂函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=1,则$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数为奇函数的是(  )
A.f(x)=$\sqrt{1+x}+\sqrt{1-x}$B.f(x)=x3-1C.f(x)=$\sqrt{1+x}-\sqrt{1-x}$D.f(x)=-$\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ax+b}{1+{x}^{2}}$是定义在(m,1)上的奇函数(a,b,m为常数),且f(2)=$\frac{4}{5}$.
(1)确定函数f(x)的解析式及定义域;
(2)判断并利用定义证明f(x)在(m,1)的单调性.
(3)若对任意t∈[-2,2],是否存在实数x使f(tx-2)+f(x)<0恒成立?若存在则求出实数x的取值范围,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2-(a2+1)x+a.
(1)若当a>0时f(x)<0在x∈(1,2)上恒成立,求a范围
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{x}{{{x^2}+1}},(x∈R)$.
(Ⅰ)判定函数f(x)在区间[-1,1]上的单调性,并用定义法加以证明;
(Ⅱ)对于任意n个实数a1,a2,…,an(可以相等),求满足|f(a1)|+|f(a2)|+…+|f(an)|≥50成立的正整数n的最小值;
(Ⅲ)设函数${g_n}(x)=f(x)-f{({n^2})_{\;}}(n∈{N^*})$在区间[0,1]上的零点为x=xn,试探究是否存在正整数n,使得x1+x2+…+xn≥2?若存在,求正整数n的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在周长为6的△ABC中,∠ABC=60°,点P在边AB上,PH⊥CA于H(点H在边CA上),且PH=$\frac{\sqrt{3}}{2}$,CP=$\frac{\sqrt{7}}{2}$,则边CA的长为2.1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.篮球比赛时,运动员的进攻成功率=投球命中率×不被对方运动员的拦截率.某运动员在距球篮10米(指到篮圈圆心在地面上射影的距离)以内的投球命中率有如下变化:距球篮1米以内(不含1米)为100%.距离球篮x米处,命中率下降至100%-10%[x].该运动员投球被拦截率为$\frac{90%}{[x]+1}({[x]为实数x的整数部分,如[{3.4}]=3})$.试求该运动员在比赛时:(结果精确到1%)
(1)在三分线(约距球篮6.72米)处的进攻成功率为多少?
(2)在距球篮几米处的进攻成功率最大,最大进攻成功率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.“m>-1”是“方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{1+m}$=1表示双曲线”的一个充分不必要条件.

查看答案和解析>>

同步练习册答案