精英家教网 > 高中数学 > 题目详情
(2012•佛山二模)据市场调查,某种商品一年中12个月的价格与月份的关系可以近似地用函数f(x)=Asin(ωx+φ)+7(A>0,ω>0,|φ|<
π
2
)来表示(x为月份).已知3月份达到最高价9千元,7月份价格最低为5千元,则国庆期间的价格约为(  )
分析:根据3月份达到最高价9千元,7月份价格最低为5千元,得函数的振幅A=2且周期T=8.再根据函数的最大值为f(3)=9,算出φ=-
π
4
,从而得出函数表达式为f(x)=2sin(
π
4
x-
π
4
)+7,求出f(10)的近似值,即得国庆期间的价格.
解答:解:∵3月份达到最高价9千元,7月份价格最低为5千元,
∴2A=9-5=4,得A=2.函数的周期T=2(7-3)=8
因此,ω=
T
=
π
4
,得函数表达式为f(x)=2sin(
π
4
x+φ)+7
∵f(3)=2sin(
4
+φ)+7=9,函数最大值为9
4
+φ=
π
2
+2kπ,得φ=-
π
4
+2kπ,(k∈Z)
∵|φ|<
π
2
,∴取k=0,得φ=-
π
4

由此可得函数表达式为f(x)=2sin(
π
4
x-
π
4
)+7
∴f(10)=2sin(
π
4
×10-
π
4
)+7=
2
+7≈8.4千元
即国庆期间的价格约为8.4千元
故选D
点评:本题给出类似于三角函数的模型的实际应用问题,求一个近似值,着重考查了正弦函数的图象与性质的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山二模)已知函数fM(x)的定义域为实数集R,满足fM(x)=
1,x∈M
0,x∉M
(M是R的非空真子集),在R上有两个非空真子集A,B,且A∩B=∅,则F(x)=
fA∪B(x)+1
fA(x)+fB(x)+1
的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类别 轻度污染 中度污染 重度污染 严重污染
某市2012年3月8日-4月7日(30天)对空气质量指数PM2.5进行监测,获得数据后得到如条形图:
(Ⅰ)估计该城市一个月内空气质量类别为良的概率;
(Ⅱ)在上述30个监测数据中任取2个,设X为空气质量类别为优的天数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)若logmn=-1,则m+3n的最小值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)函数y=f(x)的图象在点M(1,f(1))处的切线方程为y=ex-e,则f′(1)=
e
e

查看答案和解析>>

同步练习册答案