精英家教网 > 高中数学 > 题目详情
16.已知三角形的三个顶点A(4,3),B(-1,2),C(1,-3),则△ABC的高CD所在的直线方程是(  )
A.5x+y-2=0B.x-5y-16=0C.5x-y-8=0D.x+5y+14=0

分析 由斜率公式可得AB的斜率,由垂直关系可得CD的斜率,可得点斜式方程,化为一般式即可.

解答 解:由斜率公式可得kAB=$\frac{3-2}{4+1}$=$\frac{1}{5}$,
∵CD⊥AB,∴kCD=-5,
∴直线CD的方程为:y+3=-5(x-1),
化为一般式可得5x+y-2=0.
故选:A.

点评 本题考查一元二次不等式的解集合直线的垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知复数z=-1+i,则$\frac{1}{z}$=(  )
A.-$\frac{1}{2}-\frac{1}{2}i$B.-$\frac{1}{2}+\frac{1}{2}i$C.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.实数x,y,k满足$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ x≤k\end{array}\right.$,z2=x2+y2,若z2的最大值为13,则k的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知全集U=R,A={x|$\frac{1}{2}$≤2x≤8},B={x|x>0},C={x|m<x<m+2}
(Ⅰ)求A∩(∁UB);
(Ⅱ)若A∩C=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三角形ABC中,角A,B,C所对的边分别为a,b,c,满足acosC=(2b-c)cosA.
(Ⅰ)求∠A的大小;
(Ⅱ)若a=3,求三角形ABC面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点(x,y)满足不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,则z=x-y的取值范围是(  )
A.[-2,-1]B.[-2,1]C.[-1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l经过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-3x的定义域为{1,2,3},则f(x)的值域为{-2,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.四川省教育厅为确保我省高考使用全国卷平稳过渡,拟召开高考命题调研会,广泛征求参会的教研员和一线教师的意见,其中教研员有80人,一线教师有100人,若采用分层抽样方法从中抽取9人发言,则应抽取的一线教师的人数为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案