分析 (1)把点(0,1)代入可解φ的值,再由周期为π可解ω;
(2)根据(1)中函数解析式,结合正弦函数的对称性,可得函数图象的对称轴方程和对称中心的坐标.
解答 解:(1)把点(0,1)代入y=2sin(ωx+φ)可得,1=2sinφ,解得sinφ=$\frac{1}{2}$,
又∵ω>0,|φ|<π,且(0,1)在函数的递增区间上,
故φ=$\frac{π}{6}$,
又∵当x=$\frac{11π}{12}$时,y=0,
∴ω×$\frac{11π}{12}$+$\frac{π}{6}$=2π,解得ω=2,
(2)由(1)得:f(x)的表达式为:f(x)=2sin(2x+$\frac{π}{6}$),
由2x+$\frac{π}{6}$=kπ,k∈Z得:x=-$\frac{π}{12}$+$\frac{1}{2}$kπ,k∈Z,
故函数y=2sin(2x+$\frac{π}{6}$)的图象的对称中心为(-$\frac{π}{12}$+$\frac{1}{2}$kπ,0),k∈Z,
由2x+$\frac{π}{6}$=$\frac{π}{2}$+kπ,k∈Z得:x=$\frac{π}{6}$+$\frac{1}{2}$kπ,k∈Z,
故函数y=2sin(2x+$\frac{π}{6}$)的图象的对称轴方程为:x=$\frac{π}{6}$+$\frac{1}{2}$kπ,k∈Z.
点评 本题考查根据y=Asin(ωx+∅)的部分图象求其解析式,正弦函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1$ | B. | $\frac{{x}^{2}}{36}+\frac{{y}^{2}}{20}=1或\frac{{x}^{2}}{20}+\frac{{y}^{2}}{36}=1$ | ||
| C. | $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$ | D. | $\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1或\frac{{x}^{2}}{5}+\frac{{y}^{2}}{9}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 序号 (i) | 分组 睡眠时间 | 组中值 (mi) | 频数 (人数) | 频率 (fi) |
| 1 | [4,5) | 4.5 | 8 | 0.04 |
| 2 | [5,6) | 5.5 | 52 | 0.26 |
| 3 | [6,7) | 6.5 | m | 0.30 |
| 4 | [7,8) | 7.5 | 56 | 0.28 |
| 5 | [8,9) | 8.5 | 20 | n |
| 6 | [9,10] | 9.5 | 4 | 0.02 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{43}$ | B. | $\sqrt{43}$ | C. | $\sqrt{11}$ | D. | 2$\sqrt{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com