精英家教网 > 高中数学 > 题目详情
14.计算:
(1)$\frac{5}{6}{a}^{\frac{1}{3}{b}^{-2}}$×(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$;
(2)log3$\sqrt{27}$+lg4+lg25+6${\;}^{lo{g}_{4}}$2+(-2)0

分析 (1)利用有理数指数幂的性质、运算法则求解.
(2)利用对数、指数的性质、运算法则、换底公式求解.

解答 解:(1)$\frac{5}{6}{a}^{\frac{1}{3}{b}^{-2}}$×(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$
=-$\frac{5}{4}$×${a}^{\frac{1}{3}-\frac{1}{2}-\frac{1}{3}}$${b}^{-2-1+\frac{3}{2}}$
=-$\frac{5}{4}{a}^{-\frac{1}{2}}{b}^{-\frac{3}{2}}$.
(2)log3$\sqrt{27}$+lg4+lg25+6${\;}^{lo{g}_{4}}$2+(-2)0
=$\frac{3}{2}+lg(4×25)+{6}^{\frac{1}{2}}+1$
=$\frac{3}{2}+2+\sqrt{6}+1$
=$\frac{9}{2}+\sqrt{6}$.

点评 本题考查对数式、指数式化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则、换底公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.三棱锥P-ABC中,∠APB=∠BPC=∠CPA=90°,M在△ABC内,∠MPA=∠MPB=60°,则∠MPC=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x<2,则$\sqrt{{x}^{2}-4x+4}$-|3-x|的值是.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则cos(π-α)的值是-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,若α∈(-$\frac{4π}{3}$,-$\frac{5π}{6}$),则α=$-\frac{5π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤3)=0.64,则P(ξ≤1)等于0.36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在△ABC中,向量$\overrightarrow{m}$=(-cosA,sinA),$\overrightarrow{n}$=(cosC,sinC),$\overrightarrow{m}$•$\overrightarrow{n}$=cos2B,若AC=6,且$\overrightarrow{BA}$•$\overrightarrow{BC}$=-18,则AB+AC等于(  )
A.3$\sqrt{2}$B.3$\sqrt{6}$C.12D.6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x),x∈R,f(0)≠0,且满足f(x1)+f(x2)=2f($\frac{{x}_{1}+{x}_{2}}{2}$)f($\frac{{x}_{1}-{x}_{2}}{2}$),则函数f(x)的奇偶性为(  )
A.是奇函数而不是偶函数B.是偶函数而不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=$\sqrt{3}$x+2的倾斜角是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案